CROSS-DISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY |
|
|
|
|
Effect of In$_{x}$Ga$_{1-x}$As Interlayer on Surface Morphology and Optical Properties of GaSb/InGaAs Type-II Quantum Dots Grown on InP (100) Substrates |
Yu-Long Chen1,2, You Gao1, Hong Chen2**, Hui Zhang3**, Miao He1,3**, Shu-Ti Li1, Shu-Wen Zheng1 |
1Guangdong Engineering Research Center of Optoelectronic Functional Materials and Devices, Institute of Opto-Electronic Materials and Technology, South China Normal University, Guangzhou 510631 2Key Laboratory for Renewable Energy, Chinese Academy of Sciences, Beijing Key Laboratory for New Energy Materials and Devices, Beijing National Laboratory for Condense Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190 3College of Physics and Optoelectric Engineering, Guangdong University of Technology, Guangzhou 510006
|
|
Cite this article: |
Yu-Long Chen, You Gao, Hong Chen et al 2016 Chin. Phys. Lett. 33 098101 |
|
|
Abstract The effects of indium composition in InGaAs interlayer on morphology of GaSb/InGaAs quantum dots (QDs) and on optical properties of GaSb/InGaAs QD material system are studied. AFM images show that the change of the indium composition in InGaAs interlayer can alter the GaSb QD morphology. It is found that low indium composition in InGaAs interlayer can promote the formation of QDs, while high indium composition can inhibit the formation of QDs. The photoluminescence (PL) spectra of GaSb/InGaAs QDs at 8 K under low excitation power indicate that the third root of the excitation power is linear with the peak position, which provides a direct evidence for their luminescence belonging to type-II material optical transition. The PL spectra at 8 K under an excitation power of 90 mW show that the optical properties of GaSb/InGaAs QD material system can be affected by the indium composition in the InGaAs interlayer, and the PL peak position is linear with the indium composition. The optical properties of GaSb/InGaAs QDs can be improved by adjusting the indium composition in the InGaAs interlayer.
|
|
Received: 11 May 2016
Published: 30 September 2016
|
|
|
|
|
|
[1] | Lin S Y, Tseng C C, Lin W H, Mai S C, Wu S Y, Chen S H, Chyi and J I 2010 Appl. Phys. Lett. 96 123503 | [2] | Hatami F, Ledentsov N N, Grundmann M, Bohrer J, Heinrichsdorff F, Beer M, Bimberg D, Ruvimov S S, Werner P, Gosele U, Heydenreich J, Richter U, Ivanov S V, Meltser B Y and Kopev P S 1995 Appl. Phys. Lett. 67 656 | [3] | Alonso á D, Alén B, García J M and Ripalda J M 2007 Appl. Phys. Lett. 91 263103 | [4] | Hatami F, Grundmann M, Ledentsov N N, Heinrichsdorff F, Heitz R, Bohrer J, Bimberg D, Ruvimov S S, Werner P, Ustinov V M, Kopev P S and Alferov Z I 1998 Phys. Rev. B 57 4635 | [5] | Lin T C, Li L C, Lin S D, Suen Y W and Lee C P 2011 J. Appl. Phys. 110 013522 | [6] | Rodriguez B J, Plis E, Bishop G, Sharma Y D, Kim H, Dawson L R and Krishna S 2007 Appl. Phys. Lett. 91 043514 | [7] | Smith D L and Mailhiot C 1987 J. Appl. Phys. 62 2545 | [8] | Shields J A, Sullivan P M, Farrer I, Ritchie D A, Leadbeater M L, Patel N K, Hogg R A, Norman C E, Curson N J and Pepper M 2001 J. Appl. Phys. 40 2058 | [9] | Li Q Y, Wang D X, Xu N X, Chen Y L, Yang F H, Tan P H and Zeng Y P 2010 J. Appl. Phys. 49 104002 | [10] | Wang P W, Hou Y, Li N, Li F Z, Chen X S, Lu W, Wang W X, Chen H, Zhou J M, Wu E and Zeng H P 2009 Appl. Phys. Lett. 94 093511 | [11] | Zhang S H, Wang L, Shi Z W, Cui Y X, Tian H T, Gao H J, Jia H Q, Wang W X, Chen H and Zhao L C 2012 Nanoscale Res. Lett. 7 87 | [12] | Meltser Y B, Solov A V, Lyublinskaya G O, Toropov A A, Terent Y V, Semenov A N, Sitnikova A A and Ivanov S V 2005 J. Cryst. Growth 278 119 | [13] | Jiang C and Sakaki H 2005 Physica E 26 180 | [14] | Müller K L, Heitz R, Pohl W U, Bimberg D, Hausler I, Kirmse H and Neumann W 2001 Appl. Phys. Lett. 79 1027 | [15] | Garc?ía M J, González L, González U M, Silveira J P, Gonzalez Y and Briones F 2001 J. Cryst. Growth 227 975 | [16] | Zhang H Z, Pickrell W G, Chang L K, Lin H C, Hsieh K C and Cheng K Y 2003 Appl. Phys. Lett. 82 4555 | [17] | Zhang S H, Wang L, Shi Z W, Tian H T, Gao J, Wang W X, Chen H, Li H T and Zhao L C 2012 Appl. Phys. Lett. 100 251908 | [18] | Wang L, Li C M, Wang X W, Tian H T, Xing Z G, Xiong M and Zhao L C 2011 Appl. Phys. A 104 257 | [19] | Jin Y C, Liu Y H, Zhang Y S, Jiang Q, Liew S L, Hopkinson M, Badcock T J, Navavi E and Mowbray D J 2007 Appl. Phys. Lett. 91 021102 |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|