Chin. Phys. Lett.  2016, Vol. 33 Issue (09): 098101    DOI: 10.1088/0256-307X/33/9/098101
CROSS-DISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY |
Effect of In$_{x}$Ga$_{1-x}$As Interlayer on Surface Morphology and Optical Properties of GaSb/InGaAs Type-II Quantum Dots Grown on InP (100) Substrates
Yu-Long Chen1,2, You Gao1, Hong Chen2**, Hui Zhang3**, Miao He1,3**, Shu-Ti Li1, Shu-Wen Zheng1
1Guangdong Engineering Research Center of Optoelectronic Functional Materials and Devices, Institute of Opto-Electronic Materials and Technology, South China Normal University, Guangzhou 510631
2Key Laboratory for Renewable Energy, Chinese Academy of Sciences, Beijing Key Laboratory for New Energy Materials and Devices, Beijing National Laboratory for Condense Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190
3College of Physics and Optoelectric Engineering, Guangdong University of Technology, Guangzhou 510006
Cite this article:   
Yu-Long Chen, You Gao, Hong Chen et al  2016 Chin. Phys. Lett. 33 098101
Download: PDF(536KB)   PDF(mobile)(KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract The effects of indium composition in InGaAs interlayer on morphology of GaSb/InGaAs quantum dots (QDs) and on optical properties of GaSb/InGaAs QD material system are studied. AFM images show that the change of the indium composition in InGaAs interlayer can alter the GaSb QD morphology. It is found that low indium composition in InGaAs interlayer can promote the formation of QDs, while high indium composition can inhibit the formation of QDs. The photoluminescence (PL) spectra of GaSb/InGaAs QDs at 8 K under low excitation power indicate that the third root of the excitation power is linear with the peak position, which provides a direct evidence for their luminescence belonging to type-II material optical transition. The PL spectra at 8 K under an excitation power of 90 mW show that the optical properties of GaSb/InGaAs QD material system can be affected by the indium composition in the InGaAs interlayer, and the PL peak position is linear with the indium composition. The optical properties of GaSb/InGaAs QDs can be improved by adjusting the indium composition in the InGaAs interlayer.
Received: 11 May 2016      Published: 30 September 2016
PACS:  81.05.Ea (III-V semiconductors)  
  81.07.Ta (Quantum dots)  
  81.15.Hi (Molecular, atomic, ion, and chemical beam epitaxy)  
  87.15.mq (Luminescence)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/33/9/098101       OR      https://cpl.iphy.ac.cn/Y2016/V33/I09/098101
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Yu-Long Chen
You Gao
Hong Chen
Hui Zhang
Miao He
Shu-Ti Li
Shu-Wen Zheng
[1]Lin S Y, Tseng C C, Lin W H, Mai S C, Wu S Y, Chen S H, Chyi and J I 2010 Appl. Phys. Lett. 96 123503
[2]Hatami F, Ledentsov N N, Grundmann M, Bohrer J, Heinrichsdorff F, Beer M, Bimberg D, Ruvimov S S, Werner P, Gosele U, Heydenreich J, Richter U, Ivanov S V, Meltser B Y and Kopev P S 1995 Appl. Phys. Lett. 67 656
[3]Alonso á D, Alén B, García J M and Ripalda J M 2007 Appl. Phys. Lett. 91 263103
[4]Hatami F, Grundmann M, Ledentsov N N, Heinrichsdorff F, Heitz R, Bohrer J, Bimberg D, Ruvimov S S, Werner P, Ustinov V M, Kopev P S and Alferov Z I 1998 Phys. Rev. B 57 4635
[5]Lin T C, Li L C, Lin S D, Suen Y W and Lee C P 2011 J. Appl. Phys. 110 013522
[6]Rodriguez B J, Plis E, Bishop G, Sharma Y D, Kim H, Dawson L R and Krishna S 2007 Appl. Phys. Lett. 91 043514
[7]Smith D L and Mailhiot C 1987 J. Appl. Phys. 62 2545
[8]Shields J A, Sullivan P M, Farrer I, Ritchie D A, Leadbeater M L, Patel N K, Hogg R A, Norman C E, Curson N J and Pepper M 2001 J. Appl. Phys. 40 2058
[9]Li Q Y, Wang D X, Xu N X, Chen Y L, Yang F H, Tan P H and Zeng Y P 2010 J. Appl. Phys. 49 104002
[10]Wang P W, Hou Y, Li N, Li F Z, Chen X S, Lu W, Wang W X, Chen H, Zhou J M, Wu E and Zeng H P 2009 Appl. Phys. Lett. 94 093511
[11]Zhang S H, Wang L, Shi Z W, Cui Y X, Tian H T, Gao H J, Jia H Q, Wang W X, Chen H and Zhao L C 2012 Nanoscale Res. Lett. 7 87
[12]Meltser Y B, Solov A V, Lyublinskaya G O, Toropov A A, Terent Y V, Semenov A N, Sitnikova A A and Ivanov S V 2005 J. Cryst. Growth 278 119
[13]Jiang C and Sakaki H 2005 Physica E 26 180
[14]Müller K L, Heitz R, Pohl W U, Bimberg D, Hausler I, Kirmse H and Neumann W 2001 Appl. Phys. Lett. 79 1027
[15]Garc?ía M J, González L, González U M, Silveira J P, Gonzalez Y and Briones F 2001 J. Cryst. Growth 227 975
[16]Zhang H Z, Pickrell W G, Chang L K, Lin H C, Hsieh K C and Cheng K Y 2003 Appl. Phys. Lett. 82 4555
[17]Zhang S H, Wang L, Shi Z W, Tian H T, Gao J, Wang W X, Chen H, Li H T and Zhao L C 2012 Appl. Phys. Lett. 100 251908
[18]Wang L, Li C M, Wang X W, Tian H T, Xing Z G, Xiong M and Zhao L C 2011 Appl. Phys. A 104 257
[19]Jin Y C, Liu Y H, Zhang Y S, Jiang Q, Liew S L, Hopkinson M, Badcock T J, Navavi E and Mowbray D J 2007 Appl. Phys. Lett. 91 021102
Related articles from Frontiers Journals
[1] Dong Pan, Huading Song, Shan Zhang, Lei Liu, Lianjun Wen, Dunyuan Liao, Ran Zhuo, Zhichuan Wang, Zitong Zhang, Shuai Yang, Jianghua Ying, Wentao Miao, Runan Shang, Hao Zhang, and Jianhua Zhao. In Situ Epitaxy of Pure Phase Ultra-Thin InAs-Al Nanowires for Quantum Devices[J]. Chin. Phys. Lett., 2022, 39(5): 098101
[2] Ding-Ming Huang, Jie-Yin Zhang, Jian-Huan Wang, Wen-Qi Wei, Zi-Hao Wang, Ting Wang, and Jian-Jun Zhang. Bufferless Epitaxial Growth of GaAs on Step-Free Ge (001) Mesa[J]. Chin. Phys. Lett., 2021, 38(6): 098101
[3] Yang Jiang, Ze-Yu Wan, Guang-Nan Zhou, Meng-Ya Fan, Gai-Ying Yang, R. Sokolovskij, Guang-Rui Xia, Qing Wang, Hong-Yu Yu. A Novel Oxygen-Based Digital Etching Technique for p-GaN/AlGaN Structures without Etch-Stop Layers[J]. Chin. Phys. Lett., 2020, 37(6): 098101
[4] Yang Jiang, Ze-Yu Wan, Guang-Nan Zhou, Meng-Ya Fan, Gai-Ying Yang, R. Sokolovskij, Guang-Rui Xia, Qing Wang, Hong-Yu Yu. A Novel Oxygen-Based Digital Etching Technique for p-GaN/AlGaN Structures without Etch-Stop Layers *[J]. Chin. Phys. Lett., 0, (): 098101
[5] Meng-Han Liu, Peng Chen, Zi-Li Xie, Xiang-Qian Xiu, Dun-Jun Chen, Bin Liu, Ping Han, Yi Shi, Rong Zhang, You-Dou Zheng, Kai Cheng, Li-Yang Zhang. Approach to Single-Mode Dominated Resonant Emission in GaN-Based Square Microdisks on Si[J]. Chin. Phys. Lett., 2020, 37(5): 098101
[6] Shen Yan, Xiao-Tao Hu, Jun-Hui Die, Cai-Wei Wang, Wei Hu, Wen-Liang Wang, Zi-Guang Ma, Zhen Deng, Chun-Hua Du, Lu Wang, Hai-Qiang Jia, Wen-Xin Wang, Yang Jiang, Guoqiang Li, Hong Chen. Surface Morphology Improvement of Non-Polar a-Plane GaN Using a Low-Temperature GaN Insertion Layer[J]. Chin. Phys. Lett., 2020, 37(3): 098101
[7] Jia-Ming Zeng, Xiao-Lan Wang, Chun-Lan Mo, Chang-Da Zheng, Jian-Li Zhang, Shuan Pan, Feng-Yi Jiang. Effect of Barrier Temperature on Photoelectric Properties of GaN-Based Yellow LEDs[J]. Chin. Phys. Lett., 2020, 37(3): 098101
[8] Shu-Zhe Mei, Quan Wang, Mei-Lan Hao, Jian-Kai Xu, Hong-Ling Xiao, Chun Feng, Li-Juan Jiang, Xiao-Liang Wang, Feng-Qi Liu, Xian-Gang Xu, Zhan-Guo Wang. Flow Field and Temperature Field in GaN-MOCVD Reactor Based on Computational Fluid Dynamics Modeling[J]. Chin. Phys. Lett., 2018, 35(9): 098101
[9] Bing-zhen Chen, Yang Zhang, Qing Wang, Zhi-yong Wang. Photoelectric Property Improvement of 1.0-eV GaInNAs and Applications in Lattice-Matched Five-Junction Solar Cells[J]. Chin. Phys. Lett., 2018, 35(7): 098101
[10] Chang Wang, Wenwu Pan, Konstantin Kolokolov, Shumin Wang. Band Structure and Optical Gain of InGaAs/GaAsBi Type-II Quantum Wells Modeled by the $k\cdot p$ Model[J]. Chin. Phys. Lett., 2018, 35(5): 098101
[11] De-Sheng Zhao, Ran Liu, Kai Fu, Guo-Hao Yu, Yong Cai, Hong-Juan Huang, Yi-Qun Wang, Run-Guang Sun, Bao-Shun Zhang. An Al$_{0.25}$Ga$_{0.75}$N/GaN Lateral Field Emission Device with a Nano Void Channel[J]. Chin. Phys. Lett., 2018, 35(3): 098101
[12] Zhi-Yu Lin, Zhi-Bin Chen, Jin-Cheng Zhang, Sheng-Rui Xu, Teng Jiang, Jun Luo, Li-Xin Guo, Yue Hao. Polar Dependence of Threading Dislocation Density in GaN Films Grown by Metal-Organic Chemical Vapor Deposition[J]. Chin. Phys. Lett., 2018, 35(2): 098101
[13] Bo-Ting Liu, Ping Ma, Xi-Lin Li, Jun-Xi Wang, Jin-Min Li. Influence of Al Preflow Time on Surface Morphology and Quality of AlN and GaN on Si (111) Grown by MOCVD[J]. Chin. Phys. Lett., 2017, 34(5): 098101
[14] Bo-Ting Liu, Shi-Kuan Guo, Ping Ma, Jun-Xi Wang, Jin-Min Li. High-Quality and Strain-Relaxation GaN Epilayer Grown on SiC Substrates Using AlN Buffer and AlGaN Interlayer[J]. Chin. Phys. Lett., 2017, 34(4): 098101
[15] Hai-Long Yu, Hao-Yue Wu, Hai-Jun Zhu, Guo-Feng Song, Yun Xu. Molecular Beam Epitaxy of GaSb on GaAs Substrates with Compositionally Graded LT-GaAs$_{x}$Sb$_{1-x}$ Buffer Layers[J]. Chin. Phys. Lett., 2017, 34(1): 098101
Viewed
Full text


Abstract