Chin. Phys. Lett.  2016, Vol. 33 Issue (09): 094202    DOI: 10.1088/0256-307X/33/9/094202
FUNDAMENTAL AREAS OF PHENOMENOLOGY(INCLUDING APPLICATIONS) |
Pulse Propagation with Self-Phase Modulation in Nonlinear Chiral Fiber and Its Applications
Demissie Gelmecha1,2, Jun-Qing Li1** Merhawit Teklu3
1Department of Physics, Harbin Institute of Technology, Harbin 150001
2Department of Electronic Science and Technology, Harbin Institute of Technology, Harbin 150001
3Communication Research Center, Harbin Institute of Technology, Harbin 150001
Cite this article:   
Demissie Gelmecha, Jun-Qing Li Merhawit Teklu 2016 Chin. Phys. Lett. 33 094202
Download: PDF(674KB)   PDF(mobile)(KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract From Maxwell's equations and Post's formalism, a generalized chiral nonlinear Schr?dinger equation (CNLSE) is obtained for the nonlinear chiral fiber. This equation governs light transmission through a dispersive nonlinear chiral fiber with joint action of chirality in linear and nonlinear ways. The generalized CNLSE shows a modulation of chirality to the effect of attenuation and nonlinearity compared with the case for a conventional fiber. Simulations based on the split-step beam propagation method reveal the role of nonlinearity with cooperation to chirality playing in the pulse evolution. By adjusting its strength the role of chirality in forming solitons is demonstrated for a given circularly polarized component. The application of nonlinear optical rotation is also discussed in an all-optical switch.
Received: 23 March 2016      Published: 30 September 2016
PACS:  42.65.Tg (Optical solitons; nonlinear guided waves)  
  42.65.Jx (Beam trapping, self-focusing and defocusing; self-phase modulation)  
  42.81.Gs (Birefringence, polarization)  
  42.70.Nq (Other nonlinear optical materials; photorefractive and semiconductor materials)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/33/9/094202       OR      https://cpl.iphy.ac.cn/Y2016/V33/I09/094202
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Demissie Gelmecha
Jun-Qing Li Merhawit Teklu
[1]Barron L D 2004 Molecular Light Scattering and Optical Activity (Cambridge: Cambridge University Press) chap 4 p 242
[2]Lindell I V et al 1994 Electrocmagnetic Waves Chiral Bi-isotropic Media (Norwood: Artech House) chap 1 p 1
[3]Huck N P et al 1996 Science 273 1686
[4]Yuan J H et al 2012 Chin. Phys. Lett. 29 104207
[5]Guo J B et al 2012 Chin. Phys. Lett. 29 084212
[6]Kopp V I et al 2004 Science 305 74
[7]Yang Z P and Zhong W P 2012 Chin. Phys. Lett. 29 064211
[8]Li J Q et al 2004 Chin. Phys. Lett. 21 675
[9]Zhao B et al 2012 Chin. Phys. Lett. 29 084201
[10]Li J et al 2010 Opt. Lett. 35 2720
[11]Zian C T et al 2014 Chin. Phys. Lett. 31 094206
[12]Chen J C et al 2012 Chin. Phys. Lett. 29 070303
[13]Cao Y et al 2011 J. Opt. Soc. Am. B 28 319
[14]Poladian L et al 2011 Opt. Express 19 968
[15]Dong J and Xu C 2009 Prog. Electromagn. Res. B 14 107
[16]Dong J and Li J 2010 Chin. Opt. Lett. 8 1032
[17]Herman N 2001 J. Opt. Soc. Am. 18 170
[18]Torres-Silva H and Zamorano M 2003 Math. Comput. Simul. 62 149
[19]Boyd R W 2003 Nonlinear Optics (New York: Academic Press) chap 6 p 280
Related articles from Frontiers Journals
[1] Shubin Wang, Guoli Ma, Xin Zhang, and Daiyin Zhu. Dynamic Behavior of Optical Soliton Interactions in Optical Communication Systems[J]. Chin. Phys. Lett., 2022, 39(11): 094202
[2] Chong Liu, Shao-Chun Chen, Xiankun Yao, and Nail Akhmediev. Modulation Instability and Non-Degenerate Akhmediev Breathers of Manakov Equations[J]. Chin. Phys. Lett., 2022, 39(9): 094202
[3] Qin Zhou, Yu Zhong, Houria Triki, Yunzhou Sun, Siliu Xu, Wenjun Liu, and Anjan Biswas. Chirped Bright and Kink Solitons in Nonlinear Optical Fibers with Weak Nonlocality and Cubic-Quantic-Septic Nonlinearity[J]. Chin. Phys. Lett., 2022, 39(4): 094202
[4] Yuan Zhao, Yun-Bin Lei, Yu-Xi Xu, Si-Liu Xu, Houria Triki, Anjan Biswas, and Qin Zhou. Vector Spatiotemporal Solitons and Their Memory Features in Cold Rydberg Gases[J]. Chin. Phys. Lett., 2022, 39(3): 094202
[5] Yiling Zhang, Chunyu Jia, and Zhaoxin Liang. Dynamics of Two Dark Solitons in a Polariton Condensate[J]. Chin. Phys. Lett., 2022, 39(2): 094202
[6] Qin Zhou. Influence of Parameters of Optical Fibers on Optical Soliton Interactions[J]. Chin. Phys. Lett., 2022, 39(1): 094202
[7] Qi-Hao Cao  and Chao-Qing Dai. Symmetric and Anti-Symmetric Solitons of the Fractional Second- and Third-Order Nonlinear Schr?dinger Equation[J]. Chin. Phys. Lett., 2021, 38(9): 094202
[8] Yuan-Yuan Yan  and Wen-Jun Liu. Soliton Rectangular Pulses and Bound States in a Dissipative System Modeled by the Variable-Coefficients Complex Cubic-Quintic Ginzburg–Landau Equation[J]. Chin. Phys. Lett., 2021, 38(9): 094202
[9] Kai Ning, Lei Hou, Song-Tao Fan, Lu-Lu Yan, Yan-Yan Zhang, Bing-Jie Rao, Xiao-Fei Zhang, Shou-Gang Zhang, Hai-Feng Jiang. An All-Polarization-Maintaining Multi-Branch Optical Frequency Comb for Highly Sensitive Cavity Ring-Down Spectroscopy *[J]. Chin. Phys. Lett., 0, (): 094202
[10] Kai Ning, Lei Hou, Song-Tao Fan, Lu-Lu Yan, Yan-Yan Zhang, Bing-Jie Rao, Xiao-Fei Zhang, Shou-Gang Zhang, Hai-Feng Jiang. An All-Polarization-Maintaining Multi-Branch Optical Frequency Comb for Highly Sensitive Cavity Ring-Down Spectroscopy[J]. Chin. Phys. Lett., 2020, 37(6): 094202
[11] Li-Chen Zhao, Yan-Hong Qin, Wen-Long Wang, Zhan-Ying Yang. A Direct Derivation of the Dark Soliton Excitation Energy[J]. Chin. Phys. Lett., 2020, 37(5): 094202
[12] Chun-Yu Jia, Zhao-Xin Liang. Dark Soliton of Polariton Condensates under Nonresonant $\mathcal{P}\mathcal{T}$-Symmetric Pumping[J]. Chin. Phys. Lett., 2020, 37(4): 094202
[13] Hui Li, S. Y. Lou. Multiple Soliton Solutions of Alice–Bob Boussinesq Equations[J]. Chin. Phys. Lett., 2019, 36(5): 094202
[14] Wei Qi, Hai-Feng Li, Zhao-Xin Liang. Variational Approach to Study $\mathcal{PT}$-Symmetric Solitons in a Bose–Einstein Condensate with Non-locality of Interactions[J]. Chin. Phys. Lett., 2019, 36(4): 094202
[15] Yun-Cheng Liao, Bin Liu, Juan Liu, Jia Chen. Asymmetric and Single-Side Splitting of Dissipative Solitons in Complex Ginzburg–Landau Equations with an Asymmetric Wedge-Shaped Potential[J]. Chin. Phys. Lett., 2019, 36(1): 094202
Viewed
Full text


Abstract