Chin. Phys. Lett.  2016, Vol. 33 Issue (09): 090302    DOI: 10.1088/0256-307X/33/9/090302
GENERAL |
Total Pairwise Quantum Correlation and Entanglement in a Mixed-Three-Spin Ising-$XY$ Model with Added Dzyaloshinskii–Moriya Interaction under Decoherence
H. A. Zad**
Young Researchers and Elite Club, Mashhad Branch, Islamic Azad University, Mashhad, Iran
Cite this article:   
H. A. Zad 2016 Chin. Phys. Lett. 33 090302
Download: PDF(644KB)   PDF(mobile)(KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract We investigate the behavior of geometric global quantum discord (GGQD) and concurrence (C) between half-spins of a mixed-three-spin (1/2, 1, 1/2) system with the Ising-$XY$ model for which spins (1, 1/2) have the Ising interaction and half-spins (1/2, 1/2) have both $XY$ and the Dzyaloshinskii–Moriya interactions together, under the decoherence action. A single-ion anisotropy property with coefficient $\zeta$ is assumed for the spin-integer. This system which includes an analytical Hamiltonian is considered at the front of an external homogeneous magnetic field $B$ in thermal equilibrium. Finally, we compare GGQD and C and express some interesting phase flip reactions of the total quantum correlation and pairwise entanglement between spins (1/2, 1/2). Generally, we conclude that the concurrence and GGQD have different behaviors under the phase flip channel.
Received: 30 May 2016      Published: 30 September 2016
PACS:  03.67.-a (Quantum information)  
  03.65.Yz (Decoherence; open systems; quantum statistical methods)  
  75.10.Pq (Spin chain models)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/33/9/090302       OR      https://cpl.iphy.ac.cn/Y2016/V33/I09/090302
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
H. A. Zad
[1]Horodecki R, Horodecki P, Horodecki M and Horodecki K 2009 Rev. Mod. Phys. 81 865
[2]Cerf N J and Adami C 1997 Fund. Theor. Phys. 81 77
[3]Cerf N J and Adami C 1997 Phys. Rev. Lett. 79 5194
[4]Horodecki M, Oppenheim J and Winter A 2005 Nature 436 673
[5]Cerf N J and Adami C 1998 Physica D 120 62
[6]Wootters W K 1998 Phys. Rev. Lett. 80 2245
[7]Hill S and Wootters W K 1997 Phys. Rev. Lett. 78 5022
[8]Wootters W K 2001 Quantum Inf. Comput. 1 27
[9]Ollivier H and Zurek W H 2001 Phys. Rev. Lett. 88 017901
Henderson L and Vedral V 2001 J. Phys. A: Math. Gen. 34 6899
[10]Liu B Q, Bin S and Jian Z 2010 Phys. Rev. A 82 062119
[11]Ferraro A, Aolita L, Cavalcanti D, Cucchietti F M and Acin A 2010 Phys. Rev. A 81 052318
[12]Sarandy M S 2009 Phys. Rev. A 80 022108
[13]Qiong W, Qiao L J and Sheng Z H 2010 Chin. Phys. B 19 100311
[14]Li B, Wang Z X and Fei S M 2011 Phys. Rev. A 83 022321
[15]Ali M, Rau A R P and Alber G 2010 Phys. Rev. A 81 042105
[16]Chen Q, Zhang C, Yu S, Yi X X and Oh C H 2011 Phys. Rev. A 84 042313
[17]Sarandy M S, Oliveira T R D and Amico L 2013 Int. J. Mod. Phys. B 27 1345030
[18]Zad H A 2015 Acta Phys. Pol. B 46 1911
[19]Mamtimin T, Ahmad A, Rabigul M, Ablimit A and Pan Q P 2013 Chin. Phys. Lett. 30 030303
[20]Daki? B, Vedral V and Brukner C 2010 Phys. Rev. Lett. 105 190502
[21]Paula F M, Oliveira T R d and Sarandy M S 2013 Phys. Rev. A 87 064101
[22]Paula F M, Montealegre J D, Saguia A, Oliveira T R d and Sarandy M S 2013 Europhys. Lett. 103 50008
[23]Saif A, Hassan M and Joag P S 2012 J. Phys. A: Math. Theor. 45 345301
[24]Xu J 2012 J. Phys. A: Math. Theor. 45 405304
[25]Lang M D and Caves C M 2010 Phys. Rev. Lett. 105 150501
[26]Yurischev M A 2015 Quantum Inf. Process. 14 3399
[27]Yao Y, Li H W, Yin Z Q and Han Z F 2012 Phys. Lett. A 376 358
[28]Yao J Y, Dong Yu Li and Zhu S Q 2013 Commun. Theor. Phys. 59 693
[29]Ning W Q, Gu S J, Chen Y G, Wu C Q and Lin H Q 2008 J. Phys.: Condens. Matter 20 235236
[30]Han S D and Aydiner E 2014 Chin. Phys. B 23 050305
[31]Tonegawa T, Hikihara T, Kaburagi M, Nishino T, Miyashita S and Mikeska H J 1998 J. Phys. Soc. Jpn. 67 1000
[32]Ivanov N, Richter B J and Schulenburg J 2009 Phys. Rev. B 79 104412
[33]Ananikian N S, Ananikyan L N, Chakhmakhchyan L A and Rojas O 2012 J. Phys.: Condens. Matter 24 256001
[34]Faizi E and Eftekhari H 2015 Chin. Phys. Lett. 32 100303
[35]?anová L, Stre?ka J and Lu?ivjansky T 2009 Condens. Matter Phys. 12 353
[36]Rojas V, Souza S M D, Ohanyan V and Khurshudyan M 2011 Phys. Rev. B 83 094430
[37]Nalbandyan M, Lazaryan H, Rojas O, Souza S M D and Ananikian N 2014 J. Phys. Soc. Jpn. 83 074001
[38]Zad H A 2016 Chin. Phys. B 25 030303
[39]Dzyaloshinskii I 1958 J. Phys. Chem. Solids 4 241
[40]Moriya T 1960 Phys. Rev. Lett. 4 228
[41]Maziero J, Celeri L C, Serra R M and Vedral V 2009 Phys. Rev. A 80 044102
[42]Modi K, Brodutch A, Cable H, Paterek T and Vedral V 2012 Rev. Mod. Phys. 84 1655
[43]Ciliberti L, Rossignoli R and Canosa N 2010 Phys. Rev. A 82 042316
[44]Girolami D and Adesso G 2011 Phys. Rev. A 83 052108
[45]Qiang W C, Zhanga H P and Zhang L 2014 Int. J. Theor. Phys. 55 1833
[46]Mazzola L, Piilo J and Maniscalco S 2010 Phys. Rev. Lett. 104 200401
[47]Zad H A and Movahhedian H 2016 Chin. Phys. B 25 080307
Related articles from Frontiers Journals
[1] Changhao Zhao, Yongcheng He, Xiao Geng, Kaiyong He, Genting Dai, Jianshe Liu, and Wei Chen. Multi-Mode Bus Coupling Architecture of Superconducting Quantum Processor[J]. Chin. Phys. Lett., 2023, 40(1): 090302
[2] Sheng-Chen Bai, Yi-Cheng Tang, and Shi-Ju Ran. Unsupervised Recognition of Informative Features via Tensor Network Machine Learning and Quantum Entanglement Variations[J]. Chin. Phys. Lett., 2022, 39(10): 090302
[3] Ji-Ze Xu, Li-Na Sun, J.-F. Wei, Y.-L. Du, Ronghui Luo, Lei-Lei Yan, M. Feng, and Shi-Lei Su. Two-Qubit Geometric Gates Based on Ground-State Blockade of Rydberg Atoms[J]. Chin. Phys. Lett., 2022, 39(9): 090302
[4] Yanxin Han, Zhongqi Sun, Tianqi Dou, Jipeng Wang, Zhenhua Li, Yuqing Huang, Pengyun Li, and Haiqiang Ma. Twin-Field Quantum Key Distribution Protocol Based on Wavelength-Division-Multiplexing Technology[J]. Chin. Phys. Lett., 2022, 39(7): 090302
[5] Dian Zhu, Wei-Min Shang, Fu-Lin Zhang, and Jing-Ling Chen. Quantum Cloning of Steering[J]. Chin. Phys. Lett., 2022, 39(7): 090302
[6] Lu-Ji Wang, Jia-Yi Lin, and Shengjun Wu. State Classification via a Random-Walk-Based Quantum Neural Network[J]. Chin. Phys. Lett., 2022, 39(5): 090302
[7] Wenjie Jiang, Zhide Lu, and Dong-Ling Deng. Quantum Continual Learning Overcoming Catastrophic Forgetting[J]. Chin. Phys. Lett., 2022, 39(5): 090302
[8] Zhiling Wang, Zenghui Bao, Yukai Wu , Yan Li , Cheng Ma , Tianqi Cai , Yipu Song , Hongyi Zhang, and Luming Duan. Improved Superconducting Qubit State Readout by Path Interference[J]. Chin. Phys. Lett., 2021, 38(11): 090302
[9] Keyu Su, Yunfei Wang, Shanchao Zhang, Zhuoping Kong, Yi Zhong, Jianfeng Li, Hui Yan, and Shi-Liang Zhu. Synchronization and Phase Shaping of Single Photons with High-Efficiency Quantum Memory[J]. Chin. Phys. Lett., 2021, 38(9): 090302
[10] Huan-Yu Liu, Tai-Ping Sun, Yu-Chun Wu, and Guo-Ping Guo. Variational Quantum Algorithms for the Steady States of Open Quantum Systems[J]. Chin. Phys. Lett., 2021, 38(8): 090302
[11] Cheng Xue, Zhao-Yun Chen, Yu-Chun Wu, and Guo-Ping Guo. Effects of Quantum Noise on Quantum Approximate Optimization Algorithm[J]. Chin. Phys. Lett., 2021, 38(3): 090302
[12] Anqi Shi , Haoyu Guan , Jun Zhang , and Wenxian Zhang. Long-Range Interaction Enhanced Adiabatic Quantum Computers[J]. Chin. Phys. Lett., 2020, 37(12): 090302
[13] A-Long Zhou , Dong Wang, Xiao-Gang Fan , Fei Ming , and Liu Ye. Mutual Restriction between Concurrence and Intrinsic Concurrence for Arbitrary Two-Qubit States[J]. Chin. Phys. Lett., 2020, 37(11): 090302
[14] Xin-Wei Zha , Min-Rui Wang, and Ruo-Xu Jiang . Constructing a Maximally Entangled Seven-Qubit State via Orthogonal Arrays[J]. Chin. Phys. Lett., 2020, 37(9): 090302
[15] Chen-Rui Zhang, Meng-Jun Hu, Guo-Yong Xiang, Yong-Sheng Zhang, Chuan-Feng Li, and Guang-Can Guo. Direct Strong Measurement of a High-Dimensional Quantum State[J]. Chin. Phys. Lett., 2020, 37(8): 090302
Viewed
Full text


Abstract