Chin. Phys. Lett.  2016, Vol. 33 Issue (07): 078201    DOI: 10.1088/0256-307X/33/7/078201
CROSS-DISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY |
A Novel Real-Time State-of-Health and State-of-Charge Co-Estimation Method for LiFePO$_{4}$ Battery
Rong-Xue Qiao1, Ming-Jian Zhang1, Yi-Dong Liu1, Wen-Ju Ren1, Yuan Lin1,2**, Feng Pan1**
1School of Advanced Materials, Peking University, Peking University Shenzhen Graduate School, Shenzhen 518055
2Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190
Cite this article:   
Rong-Xue Qiao, Ming-Jian Zhang, Yi-Dong Liu et al  2016 Chin. Phys. Lett. 33 078201
Download: PDF(532KB)   PDF(mobile)(KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract The state of charge (SOC) and state of health (SOH) are two of the most important parameters of Li-ion batteries in industrial production and in practical applications. The real-time estimation for these two parameters is crucial to realize a safe and reliable battery application. However, this is a great problem for LiFePO$_{4}$ batteries due to the large constant potential plateau in the charge/discharge process. Here we propose a combined SOC and SOH co-estimation method based on the experimental test under the simulating electric vehicle working condition. A first-order resistance-capacitance equivalent circuit is used to model the battery cell, and three parameter values, ohmic resistance ($R_{\rm s})$, parallel resistance ($R_{\rm p})$ and parallel capacity ($C_{\rm p})$, are identified from a real-time experimental test. Finally we find that $R_{\rm p}$ and $C_{\rm p}$ could be utilized to make a judgement on the SOH. More importantly, the linear relationship between $C_{\rm p}$ and the SOC is established to make the estimation of the SOC for the first time.
Received: 27 March 2016      Published: 01 August 2016
PACS:  82.47.Aa (Lithium-ion batteries)  
  88.05.Hj (Energy content issues; life cycle analysis)  
  88.05.Vx (Energy use in industry and manufacturing)  
  81.70.-q (Methods of materials testing and analysis)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/33/7/078201       OR      https://cpl.iphy.ac.cn/Y2016/V33/I07/078201
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Rong-Xue Qiao
Ming-Jian Zhang
Yi-Dong Liu
Wen-Ju Ren
Yuan Lin
Feng Pan
[1]Dubarry M, Vuillaume N and Liaw B Y 2009 J. Power Sources 186 500
[2]Liu Y H and Luo Y F 2010 IEEE Trans. Ind. Electron. 57 3963
[3]Gao J, Shi S Q and Li H 2016 Chin. Phys. B 25 018210
[4]Ferg E, Rossouw C and Loyson P 2013 J. Power Sources 226 299
[5]Leng F, Tan C M, Yazami R and Minh Duc L 2014 J. Power Sources 255 423
[6]Xiong B, Zhao J and Wei Z 2014 J. Power Sources 262 50
[7]Li J, Barillas J K, Guenther C and Danzer M A 2014 J. Power Sources 247 156
[8]Maharjan L, Inoue S, Akagi H and Asakura J 2009 IEEE Trans. Power Electron. 24 1628
[9]Spotnitz R 2003 J. Power Sources 113 72
[10]Ng K S, Moo C S, Chen Y P and Hsieh Y C 2009 Appl. Energy 86 1506
[11]Dubarry M, Svoboda V, Hwu R and Liaw B Y 2007 J. Power Sources 174 1121
[12]Pop V, Bergveld H J, Op het Veld J H G and Regtien P P L 2006 J. Electrochem. Soc. 153 A2013
[13]Pop V, Bergveld H J, Notten P H L and Regtien P P L 2005 Meas. Sci. Technol. 16 R93
[14]Snihir I, Rey W, Verbitskiy E, Belfadhel-Ayeb A and Notten P H L 2006 J. Power Sources 159 1484
[15]Roscher M A and Sauer D U 2011 J. Power Sources 196 331
[16]Plett G L 2004 J. Power Sources 134 262
[17]Charkhgard M and Farrokhi M 2010 IEEE Trans. Ind. Electron. 57 4178
[18]Lee J, Nam O and Cho B H 2007 J. Power Sources 174 9
[19]Zheng H, Liu X and Wei M 2015 Chin. Phys. B 24 098801
[20]Kim I S 2008 IEEE Trans. Power Electron. 23 2027
[21]Kim I S 2010 IEEE Trans. Power Electron. 25 1013
[22]Zhang F, Liu G and Fang L 2008 7th World Congress on Intelligent Control and Automation (Chongqing, 25–27 June 2008) p 989
[23]Kim I S 2006 J. Power Sources 163 584
[24]Chan C C, Lo E W C and Shen W X 2000 J. Power Sources 87 201
[25]Bi J, Shao S, Guan W and Wang L 2012 Chin. Phys. B 21 118801
[26]Chau K T, Wu K C and Chan C C 2004 Energy Convers. Manage. 45 1681
[27]Singh P, Vinjamuri R, Wang X and Reisner D 2006 J. Power Sources 162 829
[28]Zhang C, Zhang Y and Li Y 2015 IEEE/ASME Trans. Mechatronics 20 2604
[29]Chen Z, Mi C C, Fu Y, Xu J and Gong X 2013 J. Power Sources 240 184
[30]Remmlinger J, Buchholz M, Meiler M, Bernreuter P and Dietmayer K 2011 J. Power Sources 196 5357
[31]Eddahech A, Briat O, Bertrand N, Delétage J Y and Vinassa J M 2012 Int. J. Electr. Power Energy Syst. 42 487
Related articles from Frontiers Journals
[1] Qingyu Dong, Ruowei Yi, Jizhen Qi, Yanbin Shen, and Liwei Chen. Probing the Air Storage Failure Mechanism of Ni-Rich Layered Cathode Materials[J]. Chin. Phys. Lett., 2022, 39(3): 078201
[2] Di-Xing Ni, Yao-Dong Liu, Zhi Deng, Dian-Cheng Chen, Xin-Xin Zhang, Tao Wang, Shuai Li, and Yu-Sheng Zhao. Wet Mechanical Milling Induced Phase Transition to Cubic Anti-Perovskite Li$_{2}$OHCl[J]. Chin. Phys. Lett., 2022, 39(2): 078201
[3] Le-Qing Zhang, Qing-Tao Xia, Zhao-Hui Li, Yuan-Yuan Han, Xi-Xiang Xu, Xin-Long Zhao, Xia Wang, Yuan-Yuan Pan, Hong-Sen Li, and Qiang Li. Electrochemical Role of Transition Metals in Sn–Fe Alloy Revealed by Operando Magnetometry[J]. Chin. Phys. Lett., 2022, 39(2): 078201
[4] Zhekai Zhang, Jiyu Tian, Junfei Chen, Yugui He, Chaoyang Liu, Xinmiao Liang, and Jiwen Feng. Li Plating on Carbon Electrode Surface Probed by Low-Field Dynamic Nuclear Polarization $^{7}$Li NMR[J]. Chin. Phys. Lett., 2021, 38(12): 078201
[5] Panpan Li , Zhijie Feng , Tao Cheng , Yingchun Lyu, and Bingkun Guo. Effect of Fluorine Substitution on the Electrochemical Property and Structural Stability of a Lithium-Excess Cation Disordered Rock-Salt Cathode[J]. Chin. Phys. Lett., 2021, 38(8): 078201
[6] Jiachao Yang, Jian Zou, Chun Luo, Qiwen Ran, Xin Wang, Pengyu Chen, Chuan Hu, Xiaobin Niu, Haining Ji, and Liping Wang. FeSO$_{4}$ as a Novel Li-Ion Battery Cathode[J]. Chin. Phys. Lett., 2021, 38(6): 078201
[7] Changdong Qin, Le Wang, Pengfei Yan, Yingge Du, and Manling Sui. LiCoO$_{2}$ Epitaxial Film Enabling Precise Analysis of Interfacial Degradations[J]. Chin. Phys. Lett., 2021, 38(6): 078201
[8] Haijuan Wang, Xiao Lan, Yao Huang, Xunyong Jiang. Lithium Storage Property of Graphite/AlCuFe Quasicrystal Composites[J]. Chin. Phys. Lett., 2019, 36(9): 078201
[9] Li-Wei Jiang, Ya-Xiang Lu, Yue-Sheng Wang, Li-Lu Liu, Xing-Guo Qi, Cheng-Long Zhao, Li-Quan Chen, Yong-Sheng Hu. A High-Temperature $\beta$-Phase NaMnO$_{2}$ Stabilized by Cu Doping and Its Na Storage Properties[J]. Chin. Phys. Lett., 2018, 35(4): 078201
[10] ZHOU Xiang, CHEN Ji, GU Lin, MIAO Ling. Li Storage Performance for the Composite Structure Of Graphene and Boron Fullerene[J]. Chin. Phys. Lett., 2015, 32(02): 078201
[11] LI Lin, MA Chao, YANG Huai-Xin, LI Jian-Qi. Splitting Process of Na-Birnessite Nanosheet via Transmission Electron Microscopy[J]. Chin. Phys. Lett., 2013, 30(8): 078201
[12] XIA Rong-Sen, CUI Zhong-Hui, LIU Bi-Qiu, GUO Xiang-Xin, ZHAO Jing-Tai. Evolutions of Crystal Structure, Stoichiometry and Electrochemical Behavior with Co Substitution in LiNi1-yCoyO2 Positive Electrodes[J]. Chin. Phys. Lett., 2010, 27(7): 078201
[13] LIN Zhi-Ping, ZHAO Yu-Jun, ZHAO Yan-Ming. Li- Site and Metal-Site Ion Doping in Phosphate-Olivine LiCoPO4 by First-Principles Calculation[J]. Chin. Phys. Lett., 2009, 26(3): 078201
[14] OUYANG Chu-Ying, WANG De-Yu, SHI Si-Qi, WANG Zhao-Xiang, LI Hong, HUANG Xue-Jie, CHEN Li-Quan. First Principles Study on NaxLi1-xFePO4 As Cathode Material for Rechargeable Lithium Batteries[J]. Chin. Phys. Lett., 2006, 23(1): 078201
[15] OUYANG Chu-Ying, SHI Si-Qi, WANG Zhao-Xiang, LI Hong, HUANG Xue-Jie, CHEN Li-Quan. Temperature-Dependent Dynamic Properties of LixMn2O4 in Monte Carlo Simulations[J]. Chin. Phys. Lett., 2005, 22(2): 078201
Viewed
Full text


Abstract