Chin. Phys. Lett.  2016, Vol. 33 Issue (07): 074202    DOI: 10.1088/0256-307X/33/7/074202
FUNDAMENTAL AREAS OF PHENOMENOLOGY(INCLUDING APPLICATIONS) |
Anderson Localization in the Induced Disorder System
Fei-Fei Lu, Chun-Fang Wang**
Department of Physics, University of Shanghai for Science and Technology, Shanghai 200093
Cite this article:   
Fei-Fei Lu, Chun-Fang Wang 2016 Chin. Phys. Lett. 33 074202
Download: PDF(641KB)   PDF(mobile)(KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract We propose a coherently prepared three-level atomic medium that can provide a flexible disordered scheme for realizing the Anderson localization. Different disorder levels can be attained by modulating the intensity ratio between the two control beams. Due to the real-time tunability, the localization of the signal beam is observable and controllable. The influences of the induced disorder level, atomic density and the initial waist radius of the signal beam on the Anderson localization in the medium are also discussed.
Received: 23 April 2016      Published: 01 August 2016
PACS:  42.50.-p (Quantum optics)  
  42.65.-k (Nonlinear optics)  
  42.25.Kb (Coherence)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/33/7/074202       OR      https://cpl.iphy.ac.cn/Y2016/V33/I07/074202
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Fei-Fei Lu
Chun-Fang Wang
[1]Anderson P W 1958 Phys. Rev. 109 1492
[2]Lagendijk A, van Tiggelen B and Wiersma D S 2009 Phys. Today 62 24
[3]Abrahams E 2010 50 Years of Anderson Localization (Singapore: World Scientific Press)
[4]Hu H, Strybulevych A, Page J H, Skipetrov S E and van Tiggelen B A 2008 Nat. Phys. 4 945
[5]John S 1984 Phys. Rev. Lett. 53 2169
[6]Segev M, Silberberg Y and Christodoulides D N 2013 Nat. Photon. 7 197
[7]Deng H, Chen X, Malomed B A, Panoiu N C and Ye F 2015 Sci. Rep. 5 15585
[8]Billy J, Josse V, Zuo Z, Bernard A, Hambrecht B, Lugan P, Clément D, Sanchez-Palencia L, Bouyer P and Aspect A 2008 Nature 453 891
[9]Lahini Y, Bromberg Y, Christodoulides D N and Silberberg Y 2010 Phys. Rev. Lett. 105 163905
[10]Thompson C, Vemuri G and Agarwal G S 2010 Phys. Rev. A 82 053805
[11]Lahini Y, Bromberg Y, Shechtman Y, Szameit A, Christodoulides D N, Morandotti R and Silberberg Y 2011 Phys. Rev. A 84 041806
[12]Abouraddy A F, Di Giuseppe G, Christodoulides D N and Saleh B E A 2012 Phys. Rev. A 86 040302
[13]Chaves A J, Peres N M R and Pinheiro F A 2015 Phys. Rev. B 92 195425
[14]Jovi? D M, Denz C and Beli? M R 2012 Opt. Lett. 37 4455
[15]Schwartz T, Bartal G, Fishman S and Segev M 2007 Nature 446 52
[16]Dubi Y, Meir Y and Avishai Y 2007 Nature 449 876
[17]Reppy J D 1992 J. Low Temp. Phys. 87 205
[18]Cheng J and Huang G X 2011 Phys. Rev. A 83 053847
[19]Lahini Y, Avidan A, Pozzi F, Sorel M, Morandotti R, Christodoulides D N and Silberberg Y 2008 Phys. Rev. Lett. 100 013906
[20]Szameit A, Zeil P, Dreisow F, Heinrich M, Keil R, Nolte S, Tünnermann A and Torner L 2010 Opt. Lett. 35 1172
[21]Martin L, Di Giuseppe G, Perez-Leija A, Keil R, Dreisow F, Heinrich M, Nolte S, Szameit A, Abouraddy A F and Christodoulides D N 2011 Opt. Express 19 13636
[22]Stützer S, Kartashov Y V, Vysloukh V A, Tünnermann A, Nolte S, Lewenstein M, Torner L and Szameit A 2012 Opt. Lett. 37 1715
[23]Naether U, Meyer J M, Stützer S, Tünnermann A, Nolte S, Molina M I and Szameit A 2012 Opt. Lett. 37 485
[24]Stützer S, Kartashov Y V, Vysloukh V A, Konotop V V, Nolte S, Torner L and Szameit A 2013 Opt. Lett. 38 1488
[25]Fratini E and Pilati S 2015 Phys. Rev. A 92 063621
[26]Kartashov Y V, Konotop V V, Vysloukh V A and Torner L 2012 Opt. Lett. 37 286
[27]Molina M I, Lazarides N and Tsironis G P 2012 Phys. Rev. E 85 017601
[28]Jovi? D M, Beli? M R and Denz C 2012 Phys. Rev. A 85 031801
[29]Folli V and Conti C 2012 Opt. Lett. 37 332
[30]Pang W, Guo H X, Chen G H and Mai Z J 2014 J. Phys. Soc. Jpn. 83 034402
[31]Wu Y and Yang X X 2007 Appl. Phys. Lett. 91 094104
[32]Cheng J and Han S S 2007 Opt. Lett. 32 1162
[33]Wu Y, Saldana J and Zhu Y F 2003 Phys. Rev. A 67 013811
[34]Li J, Yu R, Ding C and Wu Y 2014 Opt. Express 22 15024
[35]Wang C F, Wang F and Yang L R 2015 Chin. Phys. Lett. 32 094203
[36]Li Y L, Malomed B A, Feng M N and Zhou J Y 2010 Phys. Rev. A 82 063813
[37]Harris S E, Field J E and Imamo?lu A 1990 Phys. Rev. Lett. 64 1107
Related articles from Frontiers Journals
[1] Ya-Jing Jiang, Xing-Dong Zhao, Shi-Qiang Xia, Chun-Jie Yang, Wu-Ming Liu, and Zun-Lue Zhu. Nonlinear Optomechanically Induced Transparency in a Spinning Kerr Resonator[J]. Chin. Phys. Lett., 2022, 39(12): 074202
[2] M.-L. Cai, Z.-D. Liu, Y. Jiang, Y.-K. Wu, Q.-X. Mei, W.-D. Zhao, L. He, X. Zhang, Z.-C. Zhou, and L.-M. Duan. Probing a Dissipative Phase Transition with a Trapped Ion through Reservoir Engineering[J]. Chin. Phys. Lett., 2022, 39(2): 074202
[3] Shaoxing Liu, Xuanying Lai, Ce Yang, and J. F. Chen. Towards High-Dimensional Entanglement in Path: Photon-Source Produced from a Two-Dimensional Atomic Cloud[J]. Chin. Phys. Lett., 2021, 38(8): 074202
[4] Rui Zhang, Yuan-Chuan Biao, Wen-Long You, Xiao-Guang Wang, Yu-Yu Zhang, and Zi-Xiang Hu. Generalized Rashba Coupling Approximation to a Resonant Spin Hall Effect of the Spin–Orbit Coupling System in a Magnetic Field[J]. Chin. Phys. Lett., 2021, 38(7): 074202
[5] Chen-Rui Zhang, Meng-Jun Hu, Guo-Yong Xiang, Yong-Sheng Zhang, Chuan-Feng Li, and Guang-Can Guo. Direct Strong Measurement of a High-Dimensional Quantum State[J]. Chin. Phys. Lett., 2020, 37(8): 074202
[6] Liwei Duan, Yan-Zhi Wang, and Qing-Hu Chen. $\mathcal{PT}$ Symmetry of a Square-Wave Modulated Two-Level System[J]. Chin. Phys. Lett., 2020, 37(8): 074202
[7] Zhiqiang Ren , Rong Wen , and J. F. Chen. Photon Coalescence in a Lossy Non-Hermitian Beam Splitter[J]. Chin. Phys. Lett., 2020, 37(8): 074202
[8] Wen-Ya Song, Fu-Lin Zhang. Dynamical Algebras in the 1+1 Dirac Oscillator and the Jaynes–Cummings Model[J]. Chin. Phys. Lett., 2020, 37(5): 074202
[9] Lingjie Yu, Heqing Wang, Hao Li, Zhen Wang, Yidong Huang, Lixing You, Wei Zhang. A Silicon Shallow-Ridge Waveguide Integrated Superconducting Nanowire Single Photon Detector Towards Quantum Photonic Circuits[J]. Chin. Phys. Lett., 2019, 36(8): 074202
[10] Jian-Feng Li, Yun-Fei Wang, Ke-Yu Su, Kai-Yu Liao, Shan-Chao Zhang, Hui Yan, Shi-Liang Zhu. Generation of Gaussian-Shape Single Photons for High Efficiency Quantum Storage[J]. Chin. Phys. Lett., 2019, 36(7): 074202
[11] Ji-Bing Yuan, Zhao-Hui Peng, Shi-Qing Tang, Deng-Yu Zhang. Superposed Transparency Effect and Entanglement Generation with Hybrid System of Photonic Molecule and Dipole Emitter[J]. Chin. Phys. Lett., 2019, 36(3): 074202
[12] Xing Wei, ZhenDa Xie, Yan-Xiao Gong, Xinjie Lv, Gang Zhao, ShiNing Zhu. Localization and Steering of Light in One-Dimensional Parity-Time Symmetric Photonic Lattices[J]. Chin. Phys. Lett., 2019, 36(1): 074202
[13] Ya-Jing Jiang, Hao Lü, Hui Jing. Superradiance-Driven Phonon Laser[J]. Chin. Phys. Lett., 2018, 35(4): 074202
[14] J. Shiri, F. Shahi, M. R. Mehmannavaz, L. Shahrassai. Phase Control of Transient Optical Properties of Double Coupled Quantum-Dot Nanostructure via Gaussian Laser Beams[J]. Chin. Phys. Lett., 2018, 35(2): 074202
[15] A. Asghari Nejad, H. R. Askari, H. R. Baghshahi. Bistability in a Hybrid Optomechanical System under the Effect of a Nonlinear Medium[J]. Chin. Phys. Lett., 2017, 34(8): 074202
Viewed
Full text


Abstract