NUCLEAR PHYSICS |
|
|
|
|
A Gaussian Model for Anisotropic Strange Quark Stars |
H. Panahi**, R. Monadi, I. Eghdami |
Department of Physics, University of Guilan, Rasht 41635-1914, Iran
|
|
Cite this article: |
H. Panahi, R. Monadi, I. Eghdami 2016 Chin. Phys. Lett. 33 072601 |
|
|
Abstract For studying the anisotropic strange quark stars, we assume that the radial pressure inside an anisotropic star can be obtained simply by isotropic pressure plus an additional Gaussian term with three free parameters ($A$, $\mu$ and $\chi$). According to recent observations, a pulsar in a mass range of 1.97$\pm$0.04$M_{\odot}$ has been measured. Hence, we take this opportunity to set the free parameters of our model. We fix $\chi$ by applying boundary and stability conditions and then search the $A-\mu$ parameter space for a maximum mass range of $1.9M_{\odot} < M_{\max} < 2.1M_{\odot}$. Our results indicate that anisotropy increases the maximum mass $M_{\max}$ and also its corresponding radius $R$ for a typical strange quark star. Furthermore, our model shows magnetic field and electric charge increase the anisotropy factor ${\it \Delta}$. In fact, ${\it \Delta}$ has a maximum on the surface and this maximum goes up in the presence of magnetic field and electric charge. Finally, we show that anisotropy can be more effective than either magnetic field or electric charge in raising maximum mass of strange quark stars.
|
|
Received: 22 January 2016
Published: 01 August 2016
|
|
|
|
|
|
[1] | Itoh N 1970 Prog. Theor. Phys. 44 291 | [2] | Farhi E and Jaffe R L 1984 Phys. Rev. D 30 2379 | [3] | Alcock C, Farhi E and Olinto A 1986 Astrophys. J. 310 261 | [4] | Haensel P, Zdunik J L and Schaefer R 1986 Astron. Astrophys. 160 121 | [5] | Carroll S M 2004 Spacetime and Geometry: An introduction to General Relativity (Cambridge: Addison Wesley) vol 1 chap 5 p 233 | [6] | Haensel P and Haensel P 2003 EAS Publ. Ser. 7 249 | [7] | Harko T and Mak M K 2003 Chin. J. Astron. Astrophys. 248 | [8] | Singh T, Singh G P and Helmi A M 1995 Il Nuovo Cimento B Ser. 110 387 | [9] | Hansraj S, Maharaj S D and Mthethwa T 2013 Pramana 81 557 | [10] | Witten E 1984 Phys. Rev. D 30 272 | [11] | Glendenning N K 2000 Compact Stars, Nuclear Physics, Particle Physics, and General Relativity (New York: Springer) chap 12 p 423 | [12] | Xu J F, Peng G X, Liu F, Hou D F and Chen L W 2015 Phys. Rev. D 92 025025 | [13] | Xia C J, Peng G X, Chen S W, Lu Z Y and Xu J F 2014 Phys. Rev. D 89 105027 | [14] | Ruderman M 1972 Annu. Rev. Astron. Astrophys. 10 427 | [15] | Bailin D and Love A 1984 Phys. Rep. 107 325 | [16] | Xu R X, Tao D J and Yang Y 2006 Mon. Not. R. Astron. Soc.: Lett. 373 L85 | [17] | Camenzind M 2007 Compact Objects in Astrophysics (Berlin: Springer) chap 4 p 124 | [18] | Haensel P, Potekhin A Y and Yakovlev D G 2007 Neutron Stars 1: Equation of State and Structure (New York: Springer) chap 1 p 4 | [19] | Yan Y, Cao J, Luo X L, Sun W M and Zong H S 2012 Chin. Phys. Lett. 29 101201 | [20] | Negi P S 2011 Int. J. Mod. Phys. D 20 1171 | [21] | Shapiro S L and Teukolsky S A 2008 Black Holes White Dwarfs Neutron Stars: the Physics of Compact Objects (New York: John Wiley & Sons) chap 9 p 258 | [22] | Perez M A, Perez R H and Mosquera C H J 2008 Int. J. Mod. Phys. D 17 2107 | [23] | Ray S, Espindola A L, Malheiro M, Lemos J P and Zanchin V T 2003 Phys. Rev. D 68 084004 | [24] | Negreiros R P, Weber F, Malheiro M and Usov V 2009 Phys. Rev. D 80 083006 | [25] | Demorest P B, Pennucci T, Ransom S M, Roberts M S E and Hessels J W T 2010 Nature 467 1081 | [26] | Luo Z Q, Liu H L, Liu J J and Lai X J 2009 Chin. Phys. B 18 377 |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|