Chin. Phys. Lett.  2016, Vol. 33 Issue (07): 070401    DOI: 10.1088/0256-307X/33/7/070401
GENERAL |
The Stability of Some Viable Stars and Electromagnetic Field
M. Azam1**, S. A. Mardan2, M. A. Rehman2
1Division of Science and Technology, University of Education, Township Campus, Lahore 54590, Pakistan
2Department of Mathematics, University of the Management and Technology, C-II, Johar Town, Lahore 54590, Pakistan
Cite this article:   
M. Azam, S. A. Mardan, M. A. Rehman 2016 Chin. Phys. Lett. 33 070401
Download: PDF(397KB)   PDF(mobile)(KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract We examine the impact of electromagnetic field on the stability of compact stars corresponding to embedded class one metric using the concept of cracking. For this purpose, we develop the generalized hydrostatic equilibrium equation for charged perfect fluid distribution of compact stars and perturb it by means of local density perturbation scheme to check the stability of inner matter configuration. We investigate the cracking of Her X-1, PSR 1937+21, PSR J 1614-2230, PSR J 0348+0432 and RX J 1856-37. We conclude that PSR J 0348+0432 and RX J 1856-37 exhibit cracking when charge is introduced on these astrophysical objects.
Received: 26 January 2016      Published: 01 August 2016
PACS:  04.20.-q (Classical general relativity)  
  04.40.Dg (Relativistic stars: structure, stability, and oscillations)  
  04.40.Nr (Einstein-Maxwell spacetimes, spacetimes with fluids, radiation or classical fields)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/33/7/070401       OR      https://cpl.iphy.ac.cn/Y2016/V33/I07/070401
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
M. Azam
S. A. Mardan
M. A. Rehman
[1]Robertson H P 1935 Astrophys. J. 82 284
[2]Kuzeev R R 1980 Gravit. Theor. Otnosit. 16 93
[3]Schwarzschild K 1916 Phys. Math. Klasse. 1916 189
[4]Kohler M and Chao K L 1965 Z. Naturforsch. A 20 1537
[5]Pavsic M and Tapia V 2001 arXiv:gr-qc/0010045
[6]Gupta Y K and Kumar J 2011 Astrophys. Space Sci. 336 419
[7]Bondi H 1964 Proc. R. Soc. London Ser. A282 303
[8]Herrera L 1992 Phys. Lett. A 165 206
[9]Herrera L and Santos N O 1997 Phys. Rep. 286 53
[10]Herrera L and Varela V 1997 Phys. Lett. A 226 143
[11]Di Prisco A et al 1994 Phys. Lett. A 195 23
[12]Di Prisco A et al 1997 Gen. Relativ. Gravit. 29 1239
[13]Abreu H et al 2007 Class. Quantum Grav. 24 4631
[14]Gonzalez G A et al 2014 arXiv:1410.7733
[15]Gonzalez G A et al 2015 J. Phys.: Conf. Ser. 600 012014
[16]Azam M et al 2015 Astrophys. Space Sci. 358 6
[17]Azam M et al 2015 Astrophys. Space Sci. 359 14
[18]Azam M et al 2015 Adv. High Energy Phys. 2015 865086
[19]Herrera L et al 2016 Phys. Rev. D 93 024047
[20]Bonnor W B 1960 Z. Phys. 160 59
[21]Bonnor W B 1965 Mon. Not. R. Astron. Soc. 129 443
[22]Bekenstein J D 1971 Phys. Rev. D 4 2185
[23]Ray S et al 2004 Braz. J. Phys. 34 310
[24]Sutantyo W 1992 NATO Sci. Ser. 377 293
[25]Rawls M L et al 2011 Astrophys. J. 730 25
[26]van Horn H M et al 1975 Science 188 930
[27]Balbus S A and Brecher K 1976 Astrophys. J. 203 202
[28]Rawley L A et al 1987 Science 238 761
[29]Xu R X et al 2001 Chin. Phys. Lett. 18 837
[30]Demorest P B et al 2010 Nature 467 1081
[31]Tauris T M et al 2011 Mon. Not. R. Astron. Soc. 416 2130
[32]Lynch R S et al 2013 Astrophys. J. 763 81
[33]Camenzind M 2007 Compact Objects in Astrophysics (Berlin: Springer) chap 6 p 270
[34]Gao Z F et al 2012 Chin. Phys. B 21 057109
[35]Gao Z F et al 2013 Mod. Phys. Lett. A 28 1350138
[36]Gao Z F et al 2015 Astron. Nachr. 336 866
[37]Gao Z F et al 2016 Mon. Not. R. Astron. Soc. 456 55
[38]Maurya S K et al 2015 Eur. Phys. J. C 75 389
[39]Karmarkar K R 1948 Proc. Indian Acad. Sci. A 27 56
[40]Pandey S N and Sharma S P 1982 Gen. Relativ. Gravit. 14 113
[41]Takisa P M et al 2014 Astrophys. Space Sci. 350 733
[42]Takisa P M et al 2014 Astrophys. Space Sci. 354 463
Related articles from Frontiers Journals
[1] P. H. R. S. Moraes, Pradyumn Kumar Sahoo, Shreyas Sunil Kulkarni, Shivaank Agarwal. An Exponential Shape Function for Wormholes in Modified Gravity[J]. Chin. Phys. Lett., 2019, 36(12): 070401
[2] Jun Wang, Li-Jia Cao. Gravitational constant in f(R) theories of gravity with non-minimal coupling between matter and geometry[J]. Chin. Phys. Lett., 2018, 35(12): 070401
[3] Ya-Bo Wu, Xue Zhang, Bo-Hai Chen, Nan Zhang, Meng-Meng Wu. Energy Conditions and Constraints on the Generalized Non-Local Gravity Model[J]. Chin. Phys. Lett., 2017, 34(7): 070401
[4] Wen-Lin Tang, Zi-Ren Luo, Yun-Kau Lau. Generalised Error Functions from the Kerr Metric[J]. Chin. Phys. Lett., 2016, 33(03): 070401
[5] Si-Yu Wu, Ya-Bo Wu, Yue-Yue Zhao, Xue Zhang, Cheng-Yuan Zhang, Bo-Hai Chen. Consistency Conditions and Constraints on Generalized $f(R)$ Gravity with Arbitrary Geometry-Matter Coupling[J]. Chin. Phys. Lett., 2016, 33(03): 070401
[6] Verma M. K., Chandel S., Ram Shri. Anisotropic Plane Symmetric Two-Fluid Cosmological Model with Time-Varying G and Λ[J]. Chin. Phys. Lett., 2015, 32(12): 070401
[7] LU Jun-Li. Relation of Oscillation Frequency to the Equation of State of Relativistic Stars[J]. Chin. Phys. Lett., 2014, 31(11): 070401
[8] Shri Ram, Priyanka. Bianchi Type-II Inflationary Models with Stiff Matter and Decaying Cosmological Term[J]. Chin. Phys. Lett., 2014, 31(07): 070401
[9] WU Ya-Bo, TONG Hai-Dan, YANG Hao, LU Jian-Bo, ZHAO Yue-Yue, LU Jun-Wang, ZHANG Xue. Reconstruction of New Holographic Chaplygin Gas Model with Viscosity[J]. Chin. Phys. Lett., 2014, 31(2): 070401
[10] FANG Heng-Zhong, ZHOU Kai-Hu. Emission of Phonons from a Rotating Sonic Black Hole[J]. Chin. Phys. Lett., 2014, 31(1): 070401
[11] Bob Osano. The Decoupling of Scalar-Modes from a Linearly Perturbed Dust-Filled Bianchi Type-I Model[J]. Chin. Phys. Lett., 2014, 31(1): 070401
[12] WU Ya-Bo, ZHAO Yue-Yue, LU Jian-Bo, LI Jian, ZHANG Wen-Xin, CHANG Hong. The Generalized f(R) Model with Coupling in 5D Spacetime[J]. Chin. Phys. Lett., 2013, 30(6): 070401
[13] Raj Bali, and Swati. LRS Bianchi Type-II Inflationary Universe with Massless Scalar Field and Time Varying Λ[J]. Chin. Phys. Lett., 2012, 29(8): 070401
[14] José Antonio Belinchón*. Scale-Covariant Theory of Gravitation Through Self-Similarity[J]. Chin. Phys. Lett., 2012, 29(5): 070401
[15] M. Sharif*,Z. Yousaf. Shearfree Spherically Symmetric Fluid Models[J]. Chin. Phys. Lett., 2012, 29(5): 070401
Viewed
Full text


Abstract