Chin. Phys. Lett.  2016, Vol. 33 Issue (06): 068101    DOI: 10.1088/0256-307X/33/6/068101
CROSS-DISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY |
Selective Area Growth and Characterization of GaN Nanorods Fabricated by Adjusting the Hydrogen Flow Rate and Growth Temperature with Metal Organic Chemical Vapor Deposition
Peng Ren1,3, Gang Han2, Bing-Lei Fu1,3, Bin Xue1,3,4, Ning Zhang1,3,4, Zhe Liu1,3,4**, Li-Xia Zhao1,3,4, Jun-Xi Wang1,3,4**, Jin-Min Li1,3,4
1Research and Development Center for Semiconductor Lighting, Chinese Academy of Sciences, Beijing 100083
2Schools of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083
3State Key Laboratory of Solid State Lighting, Chinese Academy of Sciences, Beijing 100083
4Beijing Engineering Research Center for the 3rd Generation Semiconductor Materials and Application, Chinese Academy of Sciences, Beijing 100083
Cite this article:   
Peng Ren, Gang Han, Bing-Lei Fu et al  2016 Chin. Phys. Lett. 33 068101
Download: PDF(5050KB)   PDF(mobile)(KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract GaN nanorods are successfully fabricated by adjusting the flow rate ratio of hydrogen (H$_{2}$)/nitrogen (N$_{2}$) and growth temperature of the selective area growth (SAG) method with metal organic chemical vapor deposition (MOCVD). The SAG template is obtained by nanospherical-lens photolithography. It is found that increasing the flow rate of H$_{2}$ will change the GaN crystal shape from pyramid to vertical rod, while increasing the growth temperature will reduce the diameters of GaN rods to nanometer scale. Finally the GaN nanorods with smooth lateral surface and relatively good quality are obtained under the condition that the H$_{2}$:N$_{2}$ ratio is 1:1 and the growth temperature is 1030$^{\circ}\!$C. The good crystal quality and orientation of GaN nanorods are confirmed by high resolution transmission electron microscopy. The cathodoluminescence spectrum suggests that the crystal and optical quality is also improved with increasing the temperature.
Received: 28 January 2016      Published: 30 June 2016
PACS:  81.05.Ea (III-V semiconductors)  
  81.07.Gf (Nanowires)  
  81.15.Gh (Chemical vapor deposition (including plasma-enhanced CVD, MOCVD, ALD, etc.))  
  81.16.Nd (Micro- and nanolithography)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/33/6/068101       OR      https://cpl.iphy.ac.cn/Y2016/V33/I06/068101
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Peng Ren
Gang Han
Bing-Lei Fu
Bin Xue
Ning Zhang
Zhe Liu
Li-Xia Zhao
Jun-Xi Wang
Jin-Min Li
[1]Li S and Waag A 2012 J. Appl. Phys. 111 071101
[2]Dasgupta N P, Sun J, Liu C, Brittman S, Andrews S C, Lim J, Gao H, Yan R and Yang P 2014 Adv. Mater. 26 2137
[3]Bharrat D, Hosalli A M, Van Den Broeck D M, Samberg J P, Bedair S M and El-Masry N A 2013 Appl. Phys. Lett. 103 082106
[4]Tessarek C, Bashouti M, Heilmann M, Dieker C, Knoke I, Spiecker E and Christiansen S 2013 J. Appl. Phys. 114 144304
[5]Bae S Y, Lee J Y, Min J H and Lee D S 2013 Appl. Phys. Express 6 075501
[6]Coulon P M, Alloing B, Br?ndli V, Lefebvre D, Chenot S and Zú?iga-Pérez J 2015 Phys. Status Solidii B-Basic Solid State Phys. 252 1096
[7]Eriksson T, Yamada S, Venkatesh Krishnan P, Ramasamy S and Heidari B 2011 Microelectron. Eng. 88 293
[8]Zhang Y, Wei T, Xiong Z, Shang L, Tian Y, Zhao Y, Zhou P, Wang J and Li J 2014 Appl. Phys. Lett. 105 013108
[9]Lundskog A, Forsberg U, Holtz P O and Janzén E 2012 Cryst. Growth Des. 12 5491
[10]Jung B O, Bae S Y, Kato Y, Imura M, Lee D S, Honda Y and Amano H 2014 CrystEngComm 16 2273
[11]Lin Y T, Yeh T W and Dapkus P D 2012 Nanotechnology 23 465601
[12]Li S F, Fuendling S, Wang X, Merzsch S, Al-Suleiman M A M, Wei J D, Wehmann H H, Waag A, Bergbauer W and Strassburg M 2011 Cryst. Growth Des. 11 1573
[13]Sun Q, Yerino C D, Leung B, Han J and Coltrin M E 2011 J. Appl. Phys. 110 053517
[14]Hiramatsu K, Nishiyama K, Motogaito A, Miyake H, Iyechika Y and Maeda T 1999 Phys. Status Solidi A 176 535
[15]Choi S, Kim T H, Everitt H O, Brown A, Losurdo M, Bruno G and Moto A 2007 J. Vac. Sci. Technol. B 25 969
[16]Vurgaftman I and Meyer J R 2003 J. Appl. Phys. 94 3675
[17]Liu B, Yuan F, Dierre B, Sekiguchi T, Zhang S, Xu Y and Jiang X 2014 ACS Appl. Mater. Interfaces 6 14159
[18]Masui H, Sonoda J, Pfaff N, Koslow I, Nakamura S and DenBaars S P 2008 J. Phys. D: Appl. Phys. 41 165105
[19]Xu H, Hu X, Xu X, Shen Y, Qu S, Wang C and Li S 2012 Appl. Surf. Sci. 258 6451
[20]Xu S R, Hao Y, Zhang J C, Cao Y R, Zhou X W, Yang L A, Ou X X, Chen K and Mao W 2010 J. Cryst. Growth 312 3521
Related articles from Frontiers Journals
[1] Dong Pan, Huading Song, Shan Zhang, Lei Liu, Lianjun Wen, Dunyuan Liao, Ran Zhuo, Zhichuan Wang, Zitong Zhang, Shuai Yang, Jianghua Ying, Wentao Miao, Runan Shang, Hao Zhang, and Jianhua Zhao. In Situ Epitaxy of Pure Phase Ultra-Thin InAs-Al Nanowires for Quantum Devices[J]. Chin. Phys. Lett., 2022, 39(5): 068101
[2] Ding-Ming Huang, Jie-Yin Zhang, Jian-Huan Wang, Wen-Qi Wei, Zi-Hao Wang, Ting Wang, and Jian-Jun Zhang. Bufferless Epitaxial Growth of GaAs on Step-Free Ge (001) Mesa[J]. Chin. Phys. Lett., 2021, 38(6): 068101
[3] Yang Jiang, Ze-Yu Wan, Guang-Nan Zhou, Meng-Ya Fan, Gai-Ying Yang, R. Sokolovskij, Guang-Rui Xia, Qing Wang, Hong-Yu Yu. A Novel Oxygen-Based Digital Etching Technique for p-GaN/AlGaN Structures without Etch-Stop Layers[J]. Chin. Phys. Lett., 2020, 37(6): 068101
[4] Yang Jiang, Ze-Yu Wan, Guang-Nan Zhou, Meng-Ya Fan, Gai-Ying Yang, R. Sokolovskij, Guang-Rui Xia, Qing Wang, Hong-Yu Yu. A Novel Oxygen-Based Digital Etching Technique for p-GaN/AlGaN Structures without Etch-Stop Layers *[J]. Chin. Phys. Lett., 0, (): 068101
[5] Meng-Han Liu, Peng Chen, Zi-Li Xie, Xiang-Qian Xiu, Dun-Jun Chen, Bin Liu, Ping Han, Yi Shi, Rong Zhang, You-Dou Zheng, Kai Cheng, Li-Yang Zhang. Approach to Single-Mode Dominated Resonant Emission in GaN-Based Square Microdisks on Si[J]. Chin. Phys. Lett., 2020, 37(5): 068101
[6] Shen Yan, Xiao-Tao Hu, Jun-Hui Die, Cai-Wei Wang, Wei Hu, Wen-Liang Wang, Zi-Guang Ma, Zhen Deng, Chun-Hua Du, Lu Wang, Hai-Qiang Jia, Wen-Xin Wang, Yang Jiang, Guoqiang Li, Hong Chen. Surface Morphology Improvement of Non-Polar a-Plane GaN Using a Low-Temperature GaN Insertion Layer[J]. Chin. Phys. Lett., 2020, 37(3): 068101
[7] Jia-Ming Zeng, Xiao-Lan Wang, Chun-Lan Mo, Chang-Da Zheng, Jian-Li Zhang, Shuan Pan, Feng-Yi Jiang. Effect of Barrier Temperature on Photoelectric Properties of GaN-Based Yellow LEDs[J]. Chin. Phys. Lett., 2020, 37(3): 068101
[8] Shu-Zhe Mei, Quan Wang, Mei-Lan Hao, Jian-Kai Xu, Hong-Ling Xiao, Chun Feng, Li-Juan Jiang, Xiao-Liang Wang, Feng-Qi Liu, Xian-Gang Xu, Zhan-Guo Wang. Flow Field and Temperature Field in GaN-MOCVD Reactor Based on Computational Fluid Dynamics Modeling[J]. Chin. Phys. Lett., 2018, 35(9): 068101
[9] Bing-zhen Chen, Yang Zhang, Qing Wang, Zhi-yong Wang. Photoelectric Property Improvement of 1.0-eV GaInNAs and Applications in Lattice-Matched Five-Junction Solar Cells[J]. Chin. Phys. Lett., 2018, 35(7): 068101
[10] Chang Wang, Wenwu Pan, Konstantin Kolokolov, Shumin Wang. Band Structure and Optical Gain of InGaAs/GaAsBi Type-II Quantum Wells Modeled by the $k\cdot p$ Model[J]. Chin. Phys. Lett., 2018, 35(5): 068101
[11] De-Sheng Zhao, Ran Liu, Kai Fu, Guo-Hao Yu, Yong Cai, Hong-Juan Huang, Yi-Qun Wang, Run-Guang Sun, Bao-Shun Zhang. An Al$_{0.25}$Ga$_{0.75}$N/GaN Lateral Field Emission Device with a Nano Void Channel[J]. Chin. Phys. Lett., 2018, 35(3): 068101
[12] Zhi-Yu Lin, Zhi-Bin Chen, Jin-Cheng Zhang, Sheng-Rui Xu, Teng Jiang, Jun Luo, Li-Xin Guo, Yue Hao. Polar Dependence of Threading Dislocation Density in GaN Films Grown by Metal-Organic Chemical Vapor Deposition[J]. Chin. Phys. Lett., 2018, 35(2): 068101
[13] Bo-Ting Liu, Ping Ma, Xi-Lin Li, Jun-Xi Wang, Jin-Min Li. Influence of Al Preflow Time on Surface Morphology and Quality of AlN and GaN on Si (111) Grown by MOCVD[J]. Chin. Phys. Lett., 2017, 34(5): 068101
[14] Bo-Ting Liu, Shi-Kuan Guo, Ping Ma, Jun-Xi Wang, Jin-Min Li. High-Quality and Strain-Relaxation GaN Epilayer Grown on SiC Substrates Using AlN Buffer and AlGaN Interlayer[J]. Chin. Phys. Lett., 2017, 34(4): 068101
[15] Hai-Long Yu, Hao-Yue Wu, Hai-Jun Zhu, Guo-Feng Song, Yun Xu. Molecular Beam Epitaxy of GaSb on GaAs Substrates with Compositionally Graded LT-GaAs$_{x}$Sb$_{1-x}$ Buffer Layers[J]. Chin. Phys. Lett., 2017, 34(1): 068101
Viewed
Full text


Abstract