CROSS-DISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY |
|
|
|
|
Selective Area Growth and Characterization of GaN Nanorods Fabricated by Adjusting the Hydrogen Flow Rate and Growth Temperature with Metal Organic Chemical Vapor Deposition |
Peng Ren1,3, Gang Han2, Bing-Lei Fu1,3, Bin Xue1,3,4, Ning Zhang1,3,4, Zhe Liu1,3,4**, Li-Xia Zhao1,3,4, Jun-Xi Wang1,3,4**, Jin-Min Li1,3,4 |
1Research and Development Center for Semiconductor Lighting, Chinese Academy of Sciences, Beijing 100083 2Schools of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083 3State Key Laboratory of Solid State Lighting, Chinese Academy of Sciences, Beijing 100083 4Beijing Engineering Research Center for the 3rd Generation Semiconductor Materials and Application, Chinese Academy of Sciences, Beijing 100083
|
|
Cite this article: |
Peng Ren, Gang Han, Bing-Lei Fu et al 2016 Chin. Phys. Lett. 33 068101 |
|
|
Abstract GaN nanorods are successfully fabricated by adjusting the flow rate ratio of hydrogen (H$_{2}$)/nitrogen (N$_{2}$) and growth temperature of the selective area growth (SAG) method with metal organic chemical vapor deposition (MOCVD). The SAG template is obtained by nanospherical-lens photolithography. It is found that increasing the flow rate of H$_{2}$ will change the GaN crystal shape from pyramid to vertical rod, while increasing the growth temperature will reduce the diameters of GaN rods to nanometer scale. Finally the GaN nanorods with smooth lateral surface and relatively good quality are obtained under the condition that the H$_{2}$:N$_{2}$ ratio is 1:1 and the growth temperature is 1030$^{\circ}\!$C. The good crystal quality and orientation of GaN nanorods are confirmed by high resolution transmission electron microscopy. The cathodoluminescence spectrum suggests that the crystal and optical quality is also improved with increasing the temperature.
|
|
Received: 28 January 2016
Published: 30 June 2016
|
|
PACS: |
81.05.Ea
|
(III-V semiconductors)
|
|
81.07.Gf
|
(Nanowires)
|
|
81.15.Gh
|
(Chemical vapor deposition (including plasma-enhanced CVD, MOCVD, ALD, etc.))
|
|
81.16.Nd
|
(Micro- and nanolithography)
|
|
|
|
|
[1] | Li S and Waag A 2012 J. Appl. Phys. 111 071101 | [2] | Dasgupta N P, Sun J, Liu C, Brittman S, Andrews S C, Lim J, Gao H, Yan R and Yang P 2014 Adv. Mater. 26 2137 | [3] | Bharrat D, Hosalli A M, Van Den Broeck D M, Samberg J P, Bedair S M and El-Masry N A 2013 Appl. Phys. Lett. 103 082106 | [4] | Tessarek C, Bashouti M, Heilmann M, Dieker C, Knoke I, Spiecker E and Christiansen S 2013 J. Appl. Phys. 114 144304 | [5] | Bae S Y, Lee J Y, Min J H and Lee D S 2013 Appl. Phys. Express 6 075501 | [6] | Coulon P M, Alloing B, Br?ndli V, Lefebvre D, Chenot S and Zú?iga-Pérez J 2015 Phys. Status Solidii B-Basic Solid State Phys. 252 1096 | [7] | Eriksson T, Yamada S, Venkatesh Krishnan P, Ramasamy S and Heidari B 2011 Microelectron. Eng. 88 293 | [8] | Zhang Y, Wei T, Xiong Z, Shang L, Tian Y, Zhao Y, Zhou P, Wang J and Li J 2014 Appl. Phys. Lett. 105 013108 | [9] | Lundskog A, Forsberg U, Holtz P O and Janzén E 2012 Cryst. Growth Des. 12 5491 | [10] | Jung B O, Bae S Y, Kato Y, Imura M, Lee D S, Honda Y and Amano H 2014 CrystEngComm 16 2273 | [11] | Lin Y T, Yeh T W and Dapkus P D 2012 Nanotechnology 23 465601 | [12] | Li S F, Fuendling S, Wang X, Merzsch S, Al-Suleiman M A M, Wei J D, Wehmann H H, Waag A, Bergbauer W and Strassburg M 2011 Cryst. Growth Des. 11 1573 | [13] | Sun Q, Yerino C D, Leung B, Han J and Coltrin M E 2011 J. Appl. Phys. 110 053517 | [14] | Hiramatsu K, Nishiyama K, Motogaito A, Miyake H, Iyechika Y and Maeda T 1999 Phys. Status Solidi A 176 535 | [15] | Choi S, Kim T H, Everitt H O, Brown A, Losurdo M, Bruno G and Moto A 2007 J. Vac. Sci. Technol. B 25 969 | [16] | Vurgaftman I and Meyer J R 2003 J. Appl. Phys. 94 3675 | [17] | Liu B, Yuan F, Dierre B, Sekiguchi T, Zhang S, Xu Y and Jiang X 2014 ACS Appl. Mater. Interfaces 6 14159 | [18] | Masui H, Sonoda J, Pfaff N, Koslow I, Nakamura S and DenBaars S P 2008 J. Phys. D: Appl. Phys. 41 165105 | [19] | Xu H, Hu X, Xu X, Shen Y, Qu S, Wang C and Li S 2012 Appl. Surf. Sci. 258 6451 | [20] | Xu S R, Hao Y, Zhang J C, Cao Y R, Zhou X W, Yang L A, Ou X X, Chen K and Mao W 2010 J. Cryst. Growth 312 3521 |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|