Chin. Phys. Lett.  2016, Vol. 33 Issue (06): 067301    DOI: 10.1088/0256-307X/33/6/067301
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Enhancement of Breakdown Voltage in AlGaN/GaN High Electron Mobility Transistors Using Double Buried p-Type Layers
Jun Luo1, Sheng-Lei Zhao1, Zhi-Yu Lin1, Jin-Cheng Zhang1, Xiao-Hua Ma1,2, Yue Hao1**
1Key Laboratory of Wide Band-Gap Semiconductor Materials and Devices, School of Microelectronics, Xidian University, Xi'an 710071
2School of Advanced Materials and Nanotechnology, Xidian University, Xi'an 710071
Cite this article:   
Jun Luo, Sheng-Lei Zhao, Zhi-Yu Lin et al  2016 Chin. Phys. Lett. 33 067301
Download: PDF(762KB)   PDF(mobile)(KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract A novel AlGaN/GaN high electron mobility transistor (HEMT) with double buried p-type layers (DBPLs) in the GaN buffer layer and its mechanism are studied. The DBPL AlGaN/GaN HEMT is characterized by two equi-long p-type GaN layers which are buried in the GaN buffer layer under the source side. Under the condition of high-voltage blocking state, two reverse p-n junctions introduced by the buried p-type layers will effectively modulate the surface and bulk electric fields. Meanwhile, the buffer leakage is well suppressed in this structure and both lead to a high breakdown voltage. The simulations show that the breakdown voltage of the DBPL structure can reach above 2000 V from 467 V of the conventional structure with the same gate–drain length of 8 μm.
Received: 10 January 2016      Published: 30 June 2016
PACS:  73.40.Kp (III-V semiconductor-to-semiconductor contacts, p-n junctions, and heterojunctions)  
  73.61.Ey (III-V semiconductors)  
  78.30.Fs (III-V and II-VI semiconductors)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/33/6/067301       OR      https://cpl.iphy.ac.cn/Y2016/V33/I06/067301
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Jun Luo
Sheng-Lei Zhao
Zhi-Yu Lin
Jin-Cheng Zhang
Xiao-Hua Ma
Yue Hao
[1]Zhao S L, Hou B, Chen W W, Mi M H, Zheng J X, Zhang J C, Ma X H and Hao Y 2016 IEEE Trans. Power Electron. 31 1517
[2]Luo J, Zhao S L, Mi M H, Chen W W, Hou B, Zhang J C, Ma X H and Hao Y 2016 Chin. Phys. B 25 027303
[3]Chu R M, Corrion A, Chen M, Li R, Wong D, Zehnder D, Hughes B and Boutros K 2011 IEEE Electron Device Lett. 32 632
[4]Zhao S L, Chen W W, Yue T, Wang Y, Luo J, Mao W, Ma X H and Hao Y 2013 Chin. Phys. B 22 117307
[5]Karmalkar S and Mishra U K 2001 IEEE Trans. Electron Devices 48 1515
[6]Karmalkar S, Deng J Y, Shur M S and Gaska R 2001 IEEE Electron Device Lett. 22 373
[7]Tipirneni N, Koudymov A, Adivarahan V, Yang J, Simin G and Khan M A 2006 IEEE Electron Device Lett. 27 716
[8]Karmalkar S and Mishra U K 2001 Solid-State Electron. 45 1645
[9]Xing H L, Dora Y, Chini A, Heikman S, Keller S and Mishra U K 2004 IEEE Electron Device Lett. 25 161
[10]Heikman S, Keller S, DenBaars S P and Mishra U K 2002 Appl. Phys. Lett. 81 439
[11]Poblenz C, Waltereit P, Rajan S, Heikman S, Mishra U K and Speck J S 2004 J. Vac. Sci. Technol. B 22 1145
[12]Bahat-Treidel E, Brunner F, Hilt O, Cho E, Würfl J and Tr?nkle G 2010 IEEE Trans. Electron Devices 57 3050
[13]Dora Y, Chakraborty A, Heikman S, McCarthy L, Keller S, DenBaars S P and Mishra U K 2006 IEEE Electron Device Lett. 27 529
[14]Verzellesi G, Morassi L, Meneghesso G, Meneghini M, Zanoni E, Pozzovivo G, Lavanga S, Detzel T, H?berlen O and Curatola G 2014 IEEE Electron Device Lett. 35 443
[15]Uren M J, Silvestri M, C?sar M, Hurkx G A M, Croon J A, ?onsky J and Kuball M 2014 IEEE Electron Device Lett. 35 327
[16]Cheng J B, Zhang B, Sun W F, Shi L X and Li Z J 2014 Superlattices Microstruct. 76 288
[17]Cheng J B, Zhang B and Li Z J 2008 Electron. Lett. 44 933
[18]Zhang B, Duan B X and Li Z J 2006 Chin. J. Semicond. 27 730
Related articles from Frontiers Journals
[1] Yu Zhao, Yan Teng, Jing-Jun Miao, Qi-Hua Wu, Jing-Jing Gao, Xin Li, Xiu-Jun Hao, Ying-Chun Zhao, Xu Dong, Min Xiong, Yong Huang. Mid-Infrared InAs/GaSb Superlattice Planar Photodiodes Fabricated by Metal–Organic Chemical Vapor Deposition[J]. Chin. Phys. Lett., 2020, 37(6): 067301
[2] Yu Zhao, Yan Teng, Jing-Jun Miao, Qi-Hua Wu, Jing-Jing Gao, Xin Li, Xiu-Jun Hao, Ying-Chun Zhao, Xu Dong, Min Xiong, Yong Huang. Mid-Infrared InAs/GaSb Superlattice Planar Photodiodes Fabricated by Metal–Organic Chemical Vapor Deposition *[J]. Chin. Phys. Lett., 0, (): 067301
[3] SiQin-GaoWa Bao, Jie-Jie Zhu, Xiao-Hua Ma, Bin Hou, Ling Yang, Li-Xiang Chen, Qing Zhu, Yue Hao. Effects of Low-Damage Plasma Treatment on the Channel 2DEG and Device Characteristics of AlGaN/GaN HEMTs[J]. Chin. Phys. Lett., 2020, 37(2): 067301
[4] Zhi-Yu Lin, Zhi-Bin Chen, Jin-Cheng Zhang, Sheng-Rui Xu, Teng Jiang, Jun Luo, Li-Xin Guo, Yue Hao. Polar Dependence of Threading Dislocation Density in GaN Films Grown by Metal-Organic Chemical Vapor Deposition[J]. Chin. Phys. Lett., 2018, 35(2): 067301
[5] Han-Han Lu, Jing-Ping Xu, Lu Liu. Interfacial and Electrical Properties of GaAs Metal-Oxide-Semiconductor Capacitor with ZrAlON as the Interfacial Passivation Layer[J]. Chin. Phys. Lett., 2017, 34(4): 067301
[6] Xue-Feng Zheng, Ao-Chen Wang, Xiao-Hui Hou, Ying-Zhe Wang, Hao-Yu Wen, Chong Wang, Yang Lu, Wei Mao, Xiao-Hua Ma, Yue Hao. Influence of the Diamond Layer on the Electrical Characteristics of AlGaN/GaN High-Electron-Mobility Transistors[J]. Chin. Phys. Lett., 2017, 34(2): 067301
[7] Lai Wang, Xiao Meng, Jung-Hoon Song, Tae-Soo Kim, Seung-Young Lim, Zhi-Biao Hao, Yi Luo, Chang-Zheng Sun, Yan-Jun Han, Bing Xiong, Jian Wang, Hong-Tao Li. A Method to Obtain Auger Recombination Coefficient in an InGaN-Based Blue Light-Emitting Diode[J]. Chin. Phys. Lett., 2017, 34(1): 067301
[8] LV Qian-Qian, YE Han, YIN Dong-Dong, YANG Xiao-Hong, HAN Qin. An Array Consisting of 10 High-Speed Side-Illuminated Evanescently Coupled Waveguide Photodetectors Each with a Bandwidth of 20 GHz[J]. Chin. Phys. Lett., 2015, 32(12): 067301
[9] GUO Hong-Yu, LV Yuan-Jie, GU Guo-Dong, DUN Shao-Bo, FANG Yu-Long, ZHANG Zhi-Rong, TAN Xin, SONG Xu-Bo, ZHOU Xing-Ye, FENG Zhi-Hong. High-Frequency AlGaN/GaN High-Electron-Mobility Transistors with Regrown Ohmic Contacts by Metal-Organic Chemical Vapor Deposition[J]. Chin. Phys. Lett., 2015, 32(11): 067301
[10] TANG Xiao-Yu, LU Ji-Wu, ZHANG Rui, WU Wang-Ran, LIU Chang, SHI Yi, HUANG Zi-Qian, KONG Yue-Chan, ZHAO Yi. Positive Bias Temperature Instability and Hot Carrier Injection of Back Gate Ultra-thin-body In0.53Ga0.47As-on-Insulator n-Channel Metal-Oxide-Semiconductor Field-Effect Transistor[J]. Chin. Phys. Lett., 2015, 32(11): 067301
[11] FENG Zhi-Hong, WANG Xian-Bin, WANG Li, LV Yuan-Jie, FANG Yu-Long, DUN Shao-Bo, ZHAO Zheng-Ping. Ti/Al Based Ohmic Contact to As-Grown N-Polar GaN[J]. Chin. Phys. Lett., 2015, 32(08): 067301
[12] LIU Shi-Ming, XIAO Hong-Ling, WANG Quan, YAN Jun-Da, ZHAN Xiang-Mi, GONG Jia-Min, WANG Xiao-Liang, WANG Zhan-Guo. InxGa1?xN/GaN Multiple Quantum Well Solar Cells with Conversion Efficiency of 3.77%[J]. Chin. Phys. Lett., 2015, 32(08): 067301
[13] NIU Bin, WANG Yuan, CHENG Wei, XIE Zi-Li, LU Hai-Yan, CHANG Long, XIE Jun-Ling. Common Base Four-Finger InGaAs/InP Double Heterojunction Bipolar Transistor with Maximum Oscillation Frequency 535 GHz[J]. Chin. Phys. Lett., 2015, 32(07): 067301
[14] WANG Xiao-Feng, SHAO Zhen-Guang, CHEN Dun-Jun, LU Hai, ZHANG Rong, ZHENG You-Dou. Forward Current Transport Mechanisms of Ni/Au–InAlN/AlN/GaN Schottky Diodes[J]. Chin. Phys. Lett., 2014, 31(05): 067301
[15] ZHOU Dong, LU Hai, CHEN Dun-Jun, REN Fang-Fang, ZHANG Rong, ZHENG You-Dou, LI Liang. Vacuum Violet Photo-Response of AlGaN-Based Metal-Semiconductor-Metal Photodetectors[J]. Chin. Phys. Lett., 2013, 30(11): 067301
Viewed
Full text


Abstract