Chin. Phys. Lett.  2016, Vol. 33 Issue (06): 066101    DOI: 10.1088/0256-307X/33/6/066101
CONDENSED MATTER: STRUCTURE, MECHANICAL AND THERMAL PROPERTIES |
Structural, Morphological and Electrical Properties of In-Doped Zinc Oxide Nanostructure Thin Films Grown on p-Type Gallium Nitride by Simultaneous Radio-Frequency Direct-Current Magnetron Co-Sputtering
R. Perumal1**, Z. Hassan1, R.Saravanan2
1Institute of Nano-Optoelectronics Research and Technology, School of Physics, Universiti Sains Malaysia, Penang 11800, Malaysia
2Department of Physics, University College of Engineering Pattukkottai, Anna University Chennai, Pattukkottai 614701, India
Cite this article:   
R. Perumal, Z. Hassan, R.Saravanan 2016 Chin. Phys. Lett. 33 066101
Download: PDF(1093KB)   PDF(mobile)(KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Zinc oxide (ZnO) is one of the most promising and frequently used semiconductor materials. In-doped nanostructure ZnO thin films are grown on p-type gallium nitride substrates by employing the simultaneous rf and dc magnetron co-sputtering technique. The effect of In-doping on structural, morphological and electrical properties is studied. The different dopant concentrations are accomplished by varying the direct current power of the In target while keeping the fixed radio frequency power of the ZnO target through the co-sputtering deposition technique by using argon as the sputtering gas at ambient temperature. The structural analysis confirms that all the grown thin films preferentially orientate along the $c$-axis with the wurtzite hexagonal crystal structure without having any kind of In oxide phases. The presenting Zn, O and In elements' chemical compositions are identified with EDX mapping analysis of the deposited thin films and the calculated $M$ ratio has been found to decrease with the increasing In power. The surface topographies of the grown thin films are examined with the atomic force microscope technique. The obtained results reveal that the grown film roughness increases with the In power. The Hall measurements ascertain that all the grown films have n-type conductivity and also the other electrical parameters such as resistivity, mobility and carrier concentration are analyzed.
Received: 14 December 2015      Published: 30 June 2016
PACS:  61.82.Fk (Semiconductors)  
  81.15.Cd (Deposition by sputtering)  
  61.05.cp (X-ray diffraction)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/33/6/066101       OR      https://cpl.iphy.ac.cn/Y2016/V33/I06/066101
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
R. Perumal
Z. Hassan
R.Saravanan
[1]Greene L E et al 2005 Nano Lett. 5 1231
[2]Dong J J et al 2012 Appl. Phys. Lett. 100 171109
[3]Tian Z R et al 2003 Nat. Mater. 2 821
[4]Seghier D and Gislason H P 2008 J. Mater. Sci. Mater. Electron. 19 687
[5]Yadav S K et al 2009 Adv. Mater. Res. 67 161
[6]Park S M et al 2006 Jpn. J. Appl. Phys. 45 8453
[7]Owen J et al 2007 Appl. Phys. Lett. 90 033512
[8]Lin S S et al 2005 Surf. Coat. Technol. 190 372
[9]Kim K K et al 2005 J. Appl. Phys. 97 066103
[10]Choi Y S, Hwang D K, Oh M S, Hong K P, Em V T, Choi H W and Park S J 2008 J. Electrochem. Soc. 155 H909
[11]Ito N et al 2006 Thin Solid Films 496 99
[12]Youssef A et al 2014 Opt. Quantum Electron. 46 229
[13]Rajendran A R and Subramanian B 2014 Proc. Appl. Ceram. 8 7
[14]Suja M et al 2015 ACS Appl. Mater. Interfaces 7 8894
[15]Silambarasan M et al 2015 Physica E 71 109
[16]Mazhar A A et al 2012 Vacuum 86 1998
[17]Soaram K et al 2013 Bull. Korean Chem. Soc. 34 1205
[18]Hosono H et al 1996 J. Non-Cryst. Solids 203 334
[19]Huang C G et al 2009 Semicond. Sci. Technol. 24 095019
[20]Yu C C et al 2014 J. Nanomater. 2014 861234
[21]Yaacov T B, Lve T, Van de Walle C G, Mishra U K, Speck J S and Denbaars S P 2009 Phys. Status Solidii C 6 1464
[22]Kim K J and Park Y R 2001 Appl. Phys. Lett. 78 475
[23]Cui J, Wang A C, Edleman N L, Ni J, Lee P, Armstrong N R and Marks T J 2001 Adv. Mater. 13 1476
[24]Doh J G, Hong J S, Vittal R, Kang M G, Park N G and Kim K J 2004 Chem. Mater. 16 493
[25]Cao Y G, Miao L, Tanemura S, Tanemura M, Kuno Y, Hayashi Y and Mori Y 2006 Jpn. J. Appl. Phys. 45 1623
[26]Leenheer A J, Perkins J D, Hest A M van M F, Berry J J, O'hayre R P and Ginley D S 2008 Phys. Rev. B 77 115215
[27]Lee C, Dwivedi R P, Lee W, Hong C, Lee W I and Kim H W 2008 J. Mater. Sci.: Mater. Med. 19 1981
[28]Park S U and Koh J H 2014 Cer. Inter. 40 10021
[29]Zhao R R, Wei X Q, Wang Y J and Xu X J 2013 J. Mater. Sci.: Mater. Electron. 24 4290
[30]Bhupendra Kumar, Hao Gonga and Ramam Akkipeddi 2005 J. Appl. Phys. 98 073703
[31]van der Pauw L J 1958 Philip. Res. Rep. 13 1
Related articles from Frontiers Journals
[1] Wenkai Zhu, Shihong Xie, Hailong Lin, Gaojie Zhang, Hao Wu, Tiangui Hu, Ziao Wang, Xiaomin Zhang, Jiahan Xu, Yujing Wang, Yuanhui Zheng, Faguang Yan, Jing Zhang, Lixia Zhao, Amalia Patanè, Jia Zhang, Haixin Chang, and Kaiyou Wang. Large Room-Temperature Magnetoresistance in van der Waals Ferromagnet/Semiconductor Junctions[J]. Chin. Phys. Lett., 2022, 39(12): 066101
[2] Yanling Zhang , Xiaozhu Hao , Yanping Huang , Fubo Tian, Da Li , Youchun Wang , Hao Song , and Defang Duan . Structural and Electrical Properties of Be$_{x}$Zn$_{1-x}$O Alloys under High Pressure[J]. Chin. Phys. Lett., 2021, 38(2): 066101
[3] Qing Liao, Long Kang, Tong-Min Zhang, Hui-Ping Liu, Tao Wang, Xiao-Gang Li, Jin-Yu Li, Zhen Yang, and Bing-Sheng Li. Comparison of Cavities Formed in Single Crystalline and Polycrystalline $\alpha$-SiC after H Implantation[J]. Chin. Phys. Lett., 2020, 37(7): 066101
[4] Hui-Ping Liu, Jin-Yu Li, Bing-Sheng Li. Microstructure of Hydrogen-Implanted Polycrystalline $\alpha$-SiC after Annealing[J]. Chin. Phys. Lett., 2018, 35(9): 066101
[5] Li-Hua Dai, Da-Wei Bi, Zheng-Xuan Zhang, Xin Xie, Zhi-Yuan Hu, Hui-Xiang Huang, Shi-Chang Zou. Metastable Electron Traps in Modified Silicon-on-Insulator Wafer[J]. Chin. Phys. Lett., 2018, 35(5): 066101
[6] Rui Wu, Jun-Ling Wang, Gang Yan, Rong Wang. Photoluminescence Analysis of Electron Damage for Minority Carrier Diffusion Length in GaInP/GaAs/Ge Triple-Junction Solar Cells[J]. Chin. Phys. Lett., 2018, 35(4): 066101
[7] Yu-Zhu Liu, Bing-Sheng Li, Hua Lin, Li Zhang. Recrystallization Phase in He-Implanted 6H-SiC[J]. Chin. Phys. Lett., 2017, 34(7): 066101
[8] Jun-Ling Wang, Tian-Cheng Yi, Yong Zheng, Rui Wu, Rong Wang. Temperature-Dependent Photoluminescence Analysis of 1.0MeV Electron Irradiation-Induced Nonradiative Recombination Centers in n$^{+}$–p GaAs Middle Cell of GaInP/GaAs/Ge Triple-Junction Solar Cells[J]. Chin. Phys. Lett., 2017, 34(7): 066101
[9] Yu-Zhu Liu, Bing-Sheng Li, Li Zhang. High-Temperature Annealing Induced He Bubble Evolution in Low Energy He Ion Implanted 6H-SiC[J]. Chin. Phys. Lett., 2017, 34(5): 066101
[10] Yong Zheng, Tian-Cheng Yi, Jun-Ling Wang, Peng-Fei Xiao, Rong Wang. Radiation Damage Analysis of Individual Subcells for GaInP/GaAs/Ge Solar Cells Using Photoluminescence Measurements[J]. Chin. Phys. Lett., 2017, 34(2): 066101
[11] Yi Han, Bing-Sheng Li, Zhi-Guang Wang, Jin-Xin Peng, Jian-Rong Sun, Kong-Fang Wei, Cun-Feng Yao, Ning Gao, Xing Gao, Li-Long Pang, Ya-Bin Zhu, Tie-Long Shen, Hai-Long Chang, Ming-Huan Cui, Peng Luo, Yan-Bin Sheng, Hong-Peng Zhang, Xue-Song Fang, Si-Xiang Zhao, Jin Jin, Yu-Xuan Huang, Chao Liu, Dong Wang, Wen-Hao He, Tian-Yu Deng, Peng-Fei Tai, Zhi-Wei Ma. H-ion Irradiation-induced Annealing in He-ion Implanted 4H-SiC[J]. Chin. Phys. Lett., 2017, 34(1): 066101
[12] Xiao-Nian Liu, Li-Hua Dai, Bing-Xu Ning, Shi-Chang Zou. Total-Ionizing-Dose-Induced Body Current Lowering in the 130nm PDSOI I/O NMOSFETs[J]. Chin. Phys. Lett., 2017, 34(1): 066101
[13] Xin Wang, Wu Lu, Wu-Ying Ma, Qi Guo, Zhi-Kuan Wang, Cheng-Fa He, Mo-Han Liu, Xiao-Long Li, Jin-Cheng Jia. Radiation Resistance of Fluorine-Implanted PNP Using Gated-Controlled Lateral PNP Transistor Structure[J]. Chin. Phys. Lett., 2016, 33(08): 066101
[14] Yi-Ming Li, Li-Xia Qiu, Zhan-Hui Ding, Yong-Feng Li, Bin Yao, Zhen-Yu Xiao, Pin-Wen Zhu. High-Pressure Preparation of High-Density Cu$_{2}$ZnSnS$_{4}$ Materials[J]. Chin. Phys. Lett., 2016, 33(07): 066101
[15] Yong Zheng, Tian-Cheng Yi, Peng-Fei Xiao, Juan Tang, Rong Wang. Photoluminescence Analysis of Injection-Enhanced Annealing of Electron Irradiation-Induced Defects in GaAs Middle Cells for Triple-Junction Solar Cells[J]. Chin. Phys. Lett., 2016, 33(05): 066101
Viewed
Full text


Abstract