Chin. Phys. Lett.  2016, Vol. 33 Issue (06): 065204    DOI: 10.1088/0256-307X/33/6/065204
PHYSICS OF GASES, PLASMAS, AND ELECTRIC DISCHARGES |
Traveling Wave Solutions of the Incompressible Ideal Hall Magnetohydrodynamics
Qi-Xin Wu, Zhen-Wei Xia, Wei-Hong Yang**
Department of Modern Physics, University of Science and Technology of China, Hefei 230026
Cite this article:   
Qi-Xin Wu, Zhen-Wei Xia, Wei-Hong Yang 2016 Chin. Phys. Lett. 33 065204
Download: PDF(274KB)   PDF(mobile)(KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract The solutions of incompressible ideal Hall magnetohydrodynamics are obtained by using the traveling wave method. It is shown that the velocity and magnetic field parallel to the wave vector can be arbitrary constants. The velocity and magnetic field perpendicular to the wave vector are both helical waves. Moreover, the amplitude of the velocity perpendicular to the wave vector is related to the wave number and the circular frequency. In addition, further studies indicate that, no matter whether the uniform ambient magnetic field exists or not, the forms of the travelling wave solutions do not change.
Received: 04 March 2016      Published: 30 June 2016
PACS:  52.30.Ex (Two-fluid and multi-fluid plasmas)  
  52.35.Bj (Magnetohydrodynamic waves (e.g., Alfven waves))  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/33/6/065204       OR      https://cpl.iphy.ac.cn/Y2016/V33/I06/065204
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Qi-Xin Wu
Zhen-Wei Xia
Wei-Hong Yang
[1]Alfvén H and F?lthammer C 1963 Cosmical Electrodynamics (Oxford: Clarendon Press)
[2]Parker E N 1979 Cosmic Magnetic Fields (Oxford: Clarendon Press)
[3]Frisch U, Pouquet A, Leorat J et al 1975 J. Fluid Mech. 68 769
[4]Pouquet A, Frisch U and Leorat J 1976 J. Fluid Mech. 77 321
[5]Malekynia B and Razavipour S S 2013 Chin. Phys. B 22 055202
[6]WU D J and Yang L 2006 Chin. Phys. Lett. 23 2155
[7]Iroshnikov P S 1964 Soviet Astron. 7 566
[8]Kraichnan R H 1965 Phys. Fluids 8 1385
[9]Stribling T and Matthaeus W H 1990 Phys. Fluids B 2 1979
[10]Shebalin J V, Matthaeus W H and Montgomery D 1983 J. Plasma Phys. 29 525
[11]Goldstein M L, Roberts D A and Matthaeus W H 1995 Annu. Rev. Astron. AstroPhys. 33 283
[12]Mininni P D, Gómez D O and Mahajan S M 2002 Astrophys. J. 567 L81
[13]Mininni P D, Gómez D O and Mahajan S M 2003 Astrophys. J. 587 472
[14]Matthaeus W H, Dmitruk P, Smith D et al 2003 Geophys. Res. Lett. 30 2104
[15]Sahraoui F, Galtier S and Belmont G P 2007 J. Plasma Phys. 73 723
[16]Xia Z W and Yang W H 2015 Phys. Plasmas 22 032306
[17]Mahajan S M and Krishan V 2005 Mon. Not. R. Astron. Soc. 359 L27
[18]Krishan V and Mahajan S M 2004 Sol. Phys. 220 29
[19]Krishan V and Mahajan S M 2004 J. Geophys. Res. 109 A11105
[20]Servidio S, Matthaeus W H and Carbone V 2008 Phys. Plasmas 15 042314
[21]Meyrand R and Galtier S 2012 Phys. Rev. Lett. 109 194501
[22]Li Z B and Wang M L 1993 J. Phys. A 26 6027
[23]Parkes E J and Duffy B R 1997 Phys. Lett. A 229 217
Related articles from Frontiers Journals
[1] Jian-Qiang Xu, Xiao-Dong Peng , Hong-Peng Qu , Guang-Zhou Hao . Stabilization of Short Wavelength Resistive Ballooning Modes by Ion-to-Electron Temperature and Gradient Ratios in Tokamak Edge Plasmas *[J]. Chin. Phys. Lett., 0, (): 065204
[2] Jian-Qiang Xu, Xiao-Dong Peng , Hong-Peng Qu , Guang-Zhou Hao . Stabilization of Short Wavelength Resistive Ballooning Modes by Ion-to-Electron Temperature and Gradient Ratios in Tokamak Edge Plasmas[J]. Chin. Phys. Lett., 2020, 37(6): 065204
[3] Yong-Jian Jin, Hui-Nan Zheng, Zhen-Peng Su. Propagation and Damping of Two-Fluid Magnetohydrodynamic Waves in Stratified Solar Atmosphere[J]. Chin. Phys. Lett., 2018, 35(7): 065204
[4] Zhen-Wei Xia, Chun-Hua Li, Dan-Dan Zou, Wei-Hong Yang. Helical Mode Absolute Statistical Equilibrium of Ideal Three-Dimensional Hall Magnetohydrodynamics[J]. Chin. Phys. Lett., 2017, 34(1): 065204
[5] You-Mei Wang, M. Y. Yu, L. Stenflo, A. R. Karimov. Evolution of a Cold Non-neutral Electron–Positron Plasma Slab[J]. Chin. Phys. Lett., 2016, 33(08): 065204
[6] WANG Guan-Qiong, MA Jun, WEILAND J., ZAGORODNY A.. Excitation of Zonal Flows by ion-temperature-gradient Modes Excited by the Fluid Resonance[J]. Chin. Phys. Lett., 2015, 32(11): 065204
[7] Mansour Khoramabadi, S. Farhad Masoudi. Numerical Examination of the Effects of Ion Thermal Flow on Plasma Sheath Characteristics[J]. Chin. Phys. Lett., 2013, 30(8): 065204
[8] S. Ali Shan, **, A. Mushtaq . Role of Jeans Instability in Multi-Component Quantum Plasmas in the Presence of Fermi Pressure[J]. Chin. Phys. Lett., 2011, 28(7): 065204
[9] WANG Yun-Liang, ZHOU Zhong-Xiang, LU Yan-Zhen, NI Xiao-Dong, SHEN Jiang, ZHANG Yu. Relativistic Magnetosonic Soliton in a Negative-Ion-Rich Magnetized Plasma[J]. Chin. Phys. Lett., 2008, 25(8): 065204
[10] DING Jian, LI Yi, WANG Shui. Numerical Simulation of Solitary Kinetic Alfvén Waves[J]. Chin. Phys. Lett., 2008, 25(7): 065204
[11] HE Yong, HU Xi-Wei, JIANG Zhong-He. Compressibility Effects on the Rayleigh--Taylor Instability Growth Rates[J]. Chin. Phys. Lett., 2008, 25(3): 065204
[12] JIANG Zhong-He, HE Yong, HU Xi-Wei, LV Jian-Hong, HU Ye-Min. Structures of Strong Shock Waves in Dense Plasmas[J]. Chin. Phys. Lett., 2007, 24(8): 065204
[13] YANG Lei, WU De-Jin. Effects of Charge in Heavy Ions on Solitary Kinetic Alfvén Waves in Double-Ion Plasmas[J]. Chin. Phys. Lett., 2006, 23(8): 065204
[14] HE Yong, HU Xi-Wei, HU Ye-Min. Jump Conditions of a Shock with Current in Cylindrical Non-Neutral Plasma[J]. Chin. Phys. Lett., 2006, 23(1): 065204
[15] WANG Ai-Ke, H. Sanuki, DONG Jia-Qi, F. Zonca, K. Itoh. Magnetic Field Gradient and Curvature-Driven Drift Modes in Toroidal Plasmas[J]. Chin. Phys. Lett., 2004, 21(8): 065204
Viewed
Full text


Abstract