Chin. Phys. Lett.  2016, Vol. 33 Issue (06): 065203    DOI: 10.1088/0256-307X/33/6/065203
PHYSICS OF GASES, PLASMAS, AND ELECTRIC DISCHARGES |
Nonlinear Dynamics in a Nonextensive Complex Plasma with Viscous Electron Fluids
M. R. Hossen1**, S. A. Ema2, A. A. Mamun3
1Department of Natural Sciences, Daffodil International University, Sukrabad, Dhaka-1207, Bangladesh
2Department of EEE, Sonargaon University, Dhaka-1215, Bangladesh
3Department of Physics, Jahangirnagar University, Savar, Dhaka-1342, Bangladesh
Cite this article:   
M. R. Hossen, S. A. Ema, A. A. Mamun 2016 Chin. Phys. Lett. 33 065203
Download: PDF(950KB)   PDF(mobile)(KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Cylindrical and spherical dust-electron-acoustic (DEA) shock waves and double layers in an unmagnetized, collisionless, complex or dusty plasma system are carried out. The plasma system is assumed to be composed of inertial and viscous cold electron fluids, nonextensive distributed hot electrons, Maxwellian ions, and negatively charged stationary dust grains. The standard reductive perturbation technique is used to derive the nonlinear dynamical equations, that is, the nonplanar Burgers equation and the nonplanar further Burgers equation. They are also numerically analyzed to investigate the basic features of shock waves and double layers (DLs). It is observed that the roles of the viscous cold electron fluids, nonextensivity of hot electrons, and other plasma parameters in this investigation have significantly modified the basic features (such as, polarity, amplitude and width) of the nonplanar DEA shock waves and DLs. It is also observed that the strength of the shock is maximal for the spherical geometry, intermediate for cylindrical geometry, while it is minimal for the planar geometry. The findings of our results obtained from this theoretical investigation may be useful in understanding the nonlinear phenomena associated with the nonplanar DEA waves in both space and laboratory plasmas.
Received: 29 October 2015      Published: 30 June 2016
PACS:  52.27.Lw (Dusty or complex plasmas; plasma crystals)  
  52.35.Mw (Nonlinear phenomena: waves, wave propagation, and other interactions (including parametric effects, mode coupling, ponderomotive effects, etc.))  
  52.35.Tc (Shock waves and discontinuities)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/33/6/065203       OR      https://cpl.iphy.ac.cn/Y2016/V33/I06/065203
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
M. R. Hossen
S. A. Ema
A. A. Mamun
[1]Tokar R L and Gary S P 1984 Geophys. Res. Lett. 11 1180
[2]Dubouloz N et al 1991 Geophys. Res. Lett. 18 155
[3]Kourakis I and Shukla P K 2004 Phys. Rev. E 69 036411
[4]Andereg F et al 2009 Phys. Rev. Lett. 102 095001
[5]Singh S V and Lakhina G S 2001 Planet. Space Sci. 49 107
[6]Derfler H and Simonen T C 1969 Phys. Fluids 12 269
[7]Henry D and Treguier J P 1972 J. Plasma Phys. 8 311
[8]Hossen M R and Mamun A A 2014 J. Korean Phys. Soc. 65 2045
[9]Hossen M R and Mamun A A 2015 Plasma Sci. Technol. 17 177
[10]Ema S A et al 2015 Contrib. Plasma Phys. 55 551
[11]Hossen M R and Mamun A A 2015 Braz. J. Phys. 45 200
[12]Watanabe K and Taniuti T 1977 J. Phys. Soc. Jpn. 43 1819
[13]Mamun A A 2008 Phys. Lett. A 372 4610
[14]Mendis D A and Rosenberg M 1994 Annu. Rev. Astron. Astrophys. 32 419
[15]Verheest F 2000 Waves in Dusty Space Plasmas (Dordrecht: Kluwer Academic Publishers)
[16]Shukla P K and Mamun A A 2002 Introduction to Dusty Plasma Physics (Bristol: IOP Publishers)
[17]Tsallis C 1988 J. Stat. Phys. 52 479
[18]Moslem W M et al 2011 Phys. Rev. E 84 066402
[19]Saberian E and Esfandyari-Kalejahi A 2013 Phys. Rev. E 87 053112
[20]Ema S A et al 2015 Phys. Plasmas 22 092108
[21]Ema S A et al 2015 Contrib. Plasma Phys. 55 596
[22]Plastino A R and Plastino A 1993 Phys. Lett. A 174 384
[23]Gervino G et al 2012 Cent. Eur. J. Phys. 10 594
[24]Lavagno A and Pigato D 2011 Eur. Phys. J. A 47 52
[25]Vladimirov S V and Ostrikov K J 2004 Phys. Rep. 393 175
[26]Yasmin S et al 2013 Astrophys. Space Sci. 343 245
[27]Han J N et al 2013 Phys. Plasmas 20 072109
[28]Saini N S and Kohli R 2013 Astrophys. Space Sci. 348 483
[29]Saini N S and Shalini 2013 Astrophys. Space Sci. 346 155
[30]Shahmansouri M and Alinejad H 2013 Astrophys. Space Sci. 347 305
[31]Hussain S et al 2013 Phys. Plasmas 20 092303
[32]Shahmansouri M and Alinejad H 2013 Astrophys. Space Sci. 346 165
[33]Ema S A et al 2015 Phys. Plasmas 22 043702
[34]Ema S A et al 2015 Eur. Phys. J. Plus 130 46
[35]El-Awady E I and Moslem W M 2011 Phys. Plasmas 18 082306
[36]Ghosh D K et al 2013 IEEE Trans. Plasma Sci. 41 1600
[37]Bains A S et al 2013 Astrophys. Space Sci. 343 621
[38]Mamun A A et al 2009 Phys. Plasmas 16 114503
[39]Hossen M R et al 2014 Commun. Theor. Phys. 62 888
[40]Hossen M R et al 2014 High Energy Density Phys. 13 13
[41]Shah M G et al 2015 Braz. J. Phys. 45 219
[42]Shah M G et al 2015 Commun. Theor. Phys. 64 208
[43]Mamun A A and Zobaer M S 2014 Phys. Plasmas 21 022101
[44]Hossen M R et al 2015 Astrophys. Space Sci. 357 34
[45]Hossen M A et al 2014 J. Korean Phys. Soc. 65 1883
[46]Shuchy S T et al 2013 IEEE Trans. Plasma Sci. 41 2438
Related articles from Frontiers Journals
[1] Shou-Zhi Jiang, Xue-Ni Hou, Jie Kong, Lorin S. Matthews, Truell W. Hyde, Feng Huang, Min-Juan Wang. Particle Growth in an Experimental Dusty Plasma System[J]. Chin. Phys. Lett., 2018, 35(12): 065203
[2] Rang-Yue Zhang, Yan-Hong Liu, Feng Huang, Zhao-Yang Chen, Chun-Yan Li. Effect of Particle Number Density on Wave Dispersion in a Two-Dimensional Yukawa System[J]. Chin. Phys. Lett., 2017, 34(7): 065203
[3] H. G. Abdelwahed, E. K. El-Shewy, A. A. Mahmoud. On the Time Fractional Modulation for Electron Acoustic Shock Waves[J]. Chin. Phys. Lett., 2017, 34(3): 065203
[4] You-Mei Wang, Qi Chen, Ming-Young Yu. Self-Organization of Charged Particulates in the Presence of External Force[J]. Chin. Phys. Lett., 2017, 34(3): 065203
[5] H. G. Abdelwahed, E. K. ElShewy, A. A. Mahmoud. On Time-Fractional Cylindrical Nonlinear Equation[J]. Chin. Phys. Lett., 2016, 33(11): 065203
[6] Jie Zhang, Xin Qi, Heng Zhang, Wen-Shan Duan. Particle-in-Cell Simulation of the Reflection of a Korteweg–de Vries Solitary Wave and an Envelope Solitary Wave at a Solid Boundary[J]. Chin. Phys. Lett., 2016, 33(06): 065203
[7] Zi-Juan Xie, Yu Sui, Yi Wang, Xian-Jie Wang, Yang Wang, Zhi-Guo Liu, Bing-Sheng Li, Yu Bai, Zhi-Hao Wang. Modulation of Void Motion Behavior in a Magnetized Dusty Plasma[J]. Chin. Phys. Lett., 2016, 33(01): 065203
[8] HUANG Feng, LIU Yan-Hong, CHEN Zhao-Yang, WANG Long, YE Mao-Fu. Cluster Rotation in an Unmagnetized Dusty Plasma[J]. Chin. Phys. Lett., 2013, 30(11): 065203
[9] Mehran Shahmansouri. Suprathermality Effects on Propagation Properties of Ion Acoustic Waves[J]. Chin. Phys. Lett., 2012, 29(10): 065203
[10] B. Farokhi, M. Eghbali. Effects of an Electric Field on the Cylindrical Dust Acoustic Wave in Magnetized Complex Plasmas[J]. Chin. Phys. Lett., 2012, 29(7): 065203
[11] Hafeez Ur Rehman. Electrostatic Dust Acoustic Solitons in Pair-Ion-Electron Plasmas[J]. Chin. Phys. Lett., 2012, 29(6): 065203
[12] B. Farokhi, A. Hameditabar. Comparison of Dust Lattice Waves in Three-Dimensional Cubic Configurations[J]. Chin. Phys. Lett., 2012, 29(2): 065203
[13] WU Jing, **, ZHANG Peng-Yun, SUN Ji-Zhong, YAO Lie-Ming, DUAN Xu-Ru . Dust Particle Density and Charges in Radio-Frequency Mixture Discharge Plasma[J]. Chin. Phys. Lett., 2011, 28(9): 065203
[14] B. Farokhi, ** F. Amini, M. Eghbali . Dust Acoustic Rotation Modes in Magnetized Complex Plasmas[J]. Chin. Phys. Lett., 2011, 28(7): 065203
[15] HUANG Feng**, LIU Yan-Hong, YE Mao-Fu, WANG Xue-Jin, WANG Long . Structures and Dynamics of Two-Dimensional Dust Lattices with and without Coulomb Molecules in Plasmas[J]. Chin. Phys. Lett., 2010, 27(11): 065203
Viewed
Full text


Abstract