CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
|
|
|
|
Influence of Annealing Temperature on Berthelot-Type Hopping Conduction Mechanism in Carbon-Nickel Composite Films |
V. Dalouji1**, S. M. Elahi2, A. Ghaderi3, S. Solaymani3 |
1Department of Physics, Malayer University, Malayer, Iran 2Plasma Physics Research Center, Science and Research Branch, Islamic Azad University, Tehran, Iran 3Young Researchers and Elite Club, Kermanshah Branch, Islamic Azad University, Kermanshah, Iran
|
|
Cite this article: |
V. Dalouji, S. M. Elahi, A. Ghaderi et al 2016 Chin. Phys. Lett. 33 057203 |
|
|
Abstract Electrical conductivity of carbon-nickel composite films annealed at temperatures 300, 500 and 800$^{\circ}\!$C is studied over a temperature range of 50–300 K. While the conductivity data above room temperature show extended state conduction, lowering the temperature from 150 to 50 K leads to the Berthelot-type conduction mechanism. It can be seen that the films annealed at 500$^{\circ}\!$C have the maximum conductivity. The extent of the carrier wave function at 500$^{\circ}\!$C has the minima $2.87\times10^{-7}$ cm and $2.45\times10^{-7}$ cm in octahedral-metal stretching vibrations and intrinsic stretching vibrations of the metal at the tetrahedral site, respectively. The average distances between two vibration octahedral and tetrahedral sites at 500$^{\circ}\!$C also have the minima $1.13\times10^{-7}$ cm and $0.97\times10^{-7}$ cm, respectively. The Berthelot temperature for films annealed at 800$^{\circ}\!$C has the minimum of 94.3 K.
|
|
Received: 15 December 2015
Published: 31 May 2016
|
|
PACS: |
72.15.Eb
|
(Electrical and thermal conduction in crystalline metals and alloys)
|
|
66.70.Df
|
(Metals, alloys, and semiconductors)
|
|
|
|
|
[1] | ??lu, Bramowicz M, Kulesza S, Shafiekhani A, Ghaderi A, Mashayekhi F and Solaymani S 2015 Ind. Eng. Chem. Res. 54 8212 | [2] | Stach S, Garczyk, ??lu ?, Solaymani S, Ghaderi A, Moradian R, Nezafat N B, Elahi S M and Gholamali H 2015 J. Phys. Chem. C 119 17887 | [3] | Naderi S, Ghaderi A, Solaymani S and Golzan M M 2012 Eur. Phys. J. Appl. Phys. 58 20401 | [4] | ??luuS, Stach S, Solaymani S, Moradian R, Ghaderi A, Hantehzadeh M R, Elahi S M, Garczy k and Izadyar S 2015 J. Electroanal. Chem. 74 931 | [5] | Endrino J L, Galindo R E, Zhang H S, Allen M, Gago R, Espinosa A and Anders A 2008 Surf. Coat. Technol. 202 3675 | [6] | Ghodselahi T, Vesaghi M A and Shafiekhani A 2009 J. Phys. D: Appl. Phys. 42 015308 | [7] | Ghodselahi T, Vesaghi M A, Shafiekhani A, Ahmadi M, Panahandeh M and HeidariSaani M 2010 Physica B 405 3949 | [8] | Garcia-Zarco O, Rodil S E and Camacho-Lopez M A 2009 Thin Solid Films 518 1493 | [9] | Dalouji V, ElahiS M and SaadiAlecasir M 2015 Phys. Scr. 90 115802 | [10] | Elahi S M, Dalouji V, Mehrparvar D and Valedbagi S 2013 Mol. Cryst. Liq. Cryst. 587 105 | [11] | Dalouji V and Elahi S M 2014 J. Korean Phys. Soc. 64 857 | [12] | Dalouji V and Elahi S M 2015 J. Fusion Energy 34 646 | [13] | Islam M N, Ram S K and Kumar S 2009 Physica E 41 1025 | [14] | Serin T, Yildiz A, andSerinN S H 2011 Physica B 406 3551 | [15] | Hill R M 1976 Phys. Status Solidi A 35 29 | [16] | Zabrodski A G and Zinoveva K N 1984 Sov. Phys. JETP 59 425 | [17] | Tan M, K?seoglu Y, Alan F and Sentürk E 2011 J. Alloys Compd. 509 9399 | [18] | Ajmal M and Maqsood A 2008 Mater. Lett. 62 2077 | [19] | Hurd C M 1985 J. Phys. C 186 487 | [20] | Mehra R M, Agarwal V, Singh V A and Mathur P C 1998 J. Appl. Phys. 83 2235 | [21] | Singh J and Shimakawa K 2003 Advances in Amorphous Semiconductors (Washington: Taylor & Francis) |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|