CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
|
|
|
|
Investigations for the Surface of the Oxide Semiconductor Changes by Reduction |
Bonghoon Kang1**, Sung-Tae Hwang2 |
1Department of Visual Optics, Far East University, Chungcheongbuk-do, Korea 2College of Engineering, Hansung University, Seoul, Korea
|
|
Cite this article: |
Bonghoon Kang, Sung-Tae Hwang 2016 Chin. Phys. Lett. 33 057201 |
|
|
Abstract Oxide semiconductor SrTiO$_{3}$ single crystals are exposed to a reducing atmosphere H$_{2}$/N$_{2}$ to induce the reduction of Ti$^{4+}$ to Ti$^{3+}$ and the release of oxygen from the lattice compensating the reduction of the Ti ions. In a reducing atmosphere H$_{2}$/N$_{2}$ the optical edge brings about a red shift. The infrared reflection spectra suggest that the (11) STO single crystal surface can be terminated by the domain of the SrO or TiO$_{2}$ alternative layer during the reduction. The anisotropy and asymmetry of optical second-harmonic intensity explain a slight shrinkage. The dielectric constant reaches about 6000 and shows almost frequency dependence at all temperatures. With the increasing temperature, the dielectric constant increases rapidly. The high temperature region and low temperature region have activation energies of 0.89 and 1.04, respectively.
|
|
Received: 16 September 2015
Published: 31 May 2016
|
|
PACS: |
72.80.Jc
|
(Other crystalline inorganic semiconductors)
|
|
78.40.Fy
|
(Semiconductors)
|
|
42.65.Ky
|
(Frequency conversion; harmonic generation, including higher-order harmonic generation)
|
|
61.72.jd
|
(Vacancies)
|
|
|
|
|
[1] | Kolodiazhnyi T and Petric A 2005 J. Electroceram. 15 5 | [2] | Rehn L E 1992 Nucl. Instrum. Methods Phys. Res. Sect. B 64 161 | [3] | Ramirez P 1997 J. Phys.: Condens. Matter 9 8171 | [4] | Luo W D, Duan W H, Louie S G and Cohen M L 2004 Phys. Rev. B 70 214109 | [5] | Kamalasanan M N, Kumar N D and Chandra S 1993 J. Appl. Phys. 74 679 | [6] | Kubo T and Nozoye H 2003 Surf. Sci. 542 177 | [7] | Kawasaki M, Takahashi K, Maeda T, Tsuchiya R, Shinohara M, Ishiyama O, Yonezawa T, Yoshimoto M and Koinuma H 1994 Science 266 1540 | [8] | van der Heide P A W, Jiang Q D, Kim Y S and Rabalais J W 2001 Surf. Sci. 473 59 | [9] | Kubo T and Nozoye H 2001 Appl. Phys. A 72 s277 | [10] | Nie J, Shoji A, Koyanagi M, Takashima H, Terada N and Endo K 1998 Jpn. J. Appl. Phys. 37 L1014 | [11] | Bando H, Aiura Y, Haruyama Y, Shimizu T and Nishihara Y 1995 J. Vac. Sci. Technol. B 13 1150 | [12] | Jiang Q D and Zegenhagen J 1999 Surf. Sci. 425 343 | [13] | Liang Y and Bonnell D A 1993 Surf. Sci. 285 L510 | [14] | Viana R, Lunkenheimer P, Hemberger J, Bohmer R and Loidl A 1994 Phys. Rev. B 50 601 | [15] | Hill N H 2002 Annu. Rev. Mater. Sci. 32 1 | [16] | Javedakhtar M, Akhtar J U N and Jakson R A 1995 J. Am. Ceram. Soc. 78 421 | [17] | Baer W S 1966 Phys. Rev. 144 734 | [18] | Yamada H and Miller G R 1973 J. Solid State Chem. 6 169 |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|