Chin. Phys. Lett.  2016, Vol. 33 Issue (05): 056101    DOI: 10.1088/0256-307X/33/5/056101
CONDENSED MATTER: STRUCTURE, MECHANICAL AND THERMAL PROPERTIES |
Static and Dynamic Precipitation Behavior of the Al–20wt.%Zn Alloy
Chong-Yu Liu1,2**, Hong-Jie Jiang1, Chun-Xia Wang1, Hai-Quan Qi1, Yi-Bing Li1,3, Ming-Zhen Ma2, Ri-Ping Liu2
1Key Laboratory of New Processing Technology for Nonferrous Metal & Materials (Ministry of Education), Guilin University of Technology, Guilin 541004
2State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao 066004
3Guangxi Key Laboratory of Universities for Clean Metallurgy and Comprehensive Utilization of Nonferrous Metal Resources, Guilin 541004
Cite this article:   
Chong-Yu Liu, Hong-Jie Jiang, Chun-Xia Wang et al  2016 Chin. Phys. Lett. 33 056101
Download: PDF(2813KB)   PDF(mobile)(KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract The static and dynamic precipitation behavior of solution-treated binary Al–20 wt.% Zn alloy is investigated via artificial aging, cold rolling and artificial aging combined with cold rolling. The solution-treated Al–Zn alloy exhibits high thermal stability during aging, and low densities of nano-sized Zn particles are precipitated along with Al grain boundaries after aging at 200$^{\circ}\!$C for 13 h. Compared with static precipitation, dynamic precipitation occurs more easily in the Al–Zn alloy. Zn clusters are obtained after cold rolling at an equivalent plastic strain of 0.6, and the size of the Zn phase reaches hundreds of nanometers when the strain is increased to 12.1. The results show that the speed of static precipitation can be significantly enhanced after the application of 2.9 rolling strain. Grain refinement and defects induced by cold rolling are considered to promote Zn precipitation. The hardness of Al–Zn alloy is also affected by static and dynamic precipitations.
Received: 26 February 2016      Published: 31 May 2016
PACS:  61.46.-w (Structure of nanoscale materials)  
  61.46.Bc (Structure of clusters (e.g., metcars; not fragments of crystals; free or loosely aggregated or loosely attached to a substrate))  
  61.72.Cc (Kinetics of defect formation and annealing)  
  66.30.Lw (Diffusion of other defects)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/33/5/056101       OR      https://cpl.iphy.ac.cn/Y2016/V33/I05/056101
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Chong-Yu Liu
Hong-Jie Jiang
Chun-Xia Wang
Hai-Quan Qi
Yi-Bing Li
Ming-Zhen Ma
Ri-Ping Liu
[1]Zhuo L C, Liang S H, Wang F, Liu Y F and Xiong J C 2015 Chin. Phys. Lett. 32 076102
[2]Sabirov I, Yu M and Valiev R Z 2013 Mater. Sci. Eng. A 560 1
[3]Cai M, Field D P and Lorimer G W 2004 Mater. Sci. Eng. A 373 65
[4]Sha G, Wang Y B, Liao X Z, Duan Z C, Ringer S P and Langdon T G 2009 Acta Mater. 57 3123
[5]Sauvage X, Enikeev N, Valiev R, Nasedkina Y and Murashkin M 2014 Acta Mater. 72 125
[6]Sha G, Tugcu K, Liao X Z, Trimby P W, Murashkin M Y, Valiev R Z and Ringer S P 2014 Acta Mater. 63 169
[7]Ma Z Y, Liu F C and Mishra R S 2010 Acta Mater. 58 4693
[8]Valiev R Z, Murashkin M Y, Kilmametov A, Straumal B, Chinh N Q and Langdon T G 2010 J. Mater. Sci. 45 4718
[9]Sauvage X, Bobruk E V, Murashkin M Y, Nasedkina Y, Enikeev N A and Valiev R Z 2015 Acta Mater. 98 355
[10]Mazilkin A A, Straumal B B, Rabkin E, Baretzky B, Enders S, Protasova S G, Kogtenkova O A and Valiev R Z 2006 Acta Mater. 54 3933
[11]Mazilkin A A, Straumal B B, Borodachenkova M V, Valiev R Z, Kogtenkova O A and Baretzky B 2012 Mater. Lett. 84 63
[12]Liu C Y, Yu L, Ma M Z, Liu R P and Ma Z Y 2015 Philos. Mag. Lett. 95 539
[13]Sauvage X, Murashkin M Y, Straumal B B, Bobruk E V and Valiev R Z 2015 Adv. Eng. Mater. 17 1821
[14]Liu C Y, Ma M Z, Liu R P, Yu L and Luo K 2015 Sci. Chin. Phys. Mech. Astron. 58 104601
[15]Borodachenkova M, Barlat F, Wen W, Bastos A and Grácio J J 2015 Int. J. Plast. 68 150
Related articles from Frontiers Journals
[1] Shenshen Yan, Yi Wang, Zhibin Gao, Yang Long, and Jie Ren. Directional Design of Materials Based on Multi-Objective Optimization: A Case Study of Two-Dimensional Thermoelectric SnSe[J]. Chin. Phys. Lett., 2021, 38(2): 056101
[2] MENG Chao, HUANG Pu, ZHOU Jing-Wei, DUAN Chang-Kui, DU Jiang-Feng. Thermally Controllable Break Junctions with High Bandwidths and High Integrabilities[J]. Chin. Phys. Lett., 2015, 32(07): 056101
[3] LIANG Han, ZHAN Ke-Tao, HOU Zhi-Ling. Extraordinary Optical Confinement in a Silicon Slot Waveguide with Metallic Gratings[J]. Chin. Phys. Lett., 2015, 32(06): 056101
[4] CAI Ya-Nan, HAN Wen-Jia, CHEN Zhe, YU Jian-Gang, FENG Hong-Li, ZHU Kai-Gui. Fabrication of Nano-Columnar Tungsten Films and Their Deuterium and Helium Ion Irradiation Effects[J]. Chin. Phys. Lett., 2014, 31(12): 056101
[5] PAN Rui-Qin, XU Zi-Jian, DAI Cui-Xia. Thermal Conductivity of the Partly Covered Inner Tube in a Double-Walled Carbon Nanotube with Varied Coverage Ratios[J]. Chin. Phys. Lett., 2014, 31(1): 056101
[6] Reza Zamiri, Hamid-Reza Bahari-Poor, Azmi Zakaria, Raheleh Jorfi, Golnoush Zamiri, Avito Rebelo, Akrajas Ali Omar. Upconversion Properties of the Er-Doped Y2O3, Bi2O3 and Sb2O3 Nanoparticles Fabricated by Pulsed Laser Ablation in Liquid Media[J]. Chin. Phys. Lett., 2013, 30(11): 056101
[7] LEI Xue-Ling, LIU Gang, WU Mu-Sheng, XU Bo, OUYANG Chu-Ying, PAN Bi-Cai . The Origin of BC7 Sheet Metallicity and the Tuning of its Electronic Properties by Hydrogenation[J]. Chin. Phys. Lett., 2013, 30(6): 056101
[8] ZHOU Kai, LI Hui, WANG Zhu . Plastic Deformation of Nanocrystalline Zinc Investigated by Positron Annihilation Lifetime Spectroscopy[J]. Chin. Phys. Lett., 2013, 30(5): 056101
[9] HUANG Juan, CHEN Hong-Jin, WU Mu-Sheng, LIU Gang, OUYANG Chu-Ying, XU Bo. First-Principles Calculation of Lithium Adsorption and Diffusion on Silicene[J]. Chin. Phys. Lett., 2013, 30(1): 056101
[10] ZHAO Kun-Yu,ZENG Hua-Rong**,SONG Hong-Zhang,HUI Sen-Xing,LI Guo-Rong,YIN Qing-Rui. The Observation of Martensite and Magnetic Domain Structures in Ni53Mn24Ga23 Shape Memory Alloys by Scanning Electron Acoustic Microscopy and Scanning Thermal Microscopy[J]. Chin. Phys. Lett., 2012, 29(5): 056101
[11] PAN Rui-Qin. Diameter and Temperature Dependence of Thermal Conductivity of Single-Walled Carbon Nanotubes[J]. Chin. Phys. Lett., 2011, 28(6): 056101
[12] WANG Sheng-Jie, ZHANG Chun-Lai, WANG Zhi-Guo. Melting of Single-Walled Silicon Carbide Nanotubes: Density Functional Molecular Dynamics Simulation[J]. Chin. Phys. Lett., 2010, 27(10): 056101
[13] ZHANG Xiao-Fei, ZHANG Chu-Hang, LV Neng, XIE Jian-Ping, YE Gao-Xiang,. Condensation Behavior of Ag Aggregates on Liquid Surfaces[J]. Chin. Phys. Lett., 2010, 27(9): 056101
[14] LI Ji-Ling, YANG Guo-Wei, ZHAO Ming-Wen, LIU Xiang-Dong, XIA Yue-Yuan**. Tuning Bandgap of Si-C Heterofullerene-Based Aanotubes by H Adsorption[J]. Chin. Phys. Lett., 2010, 27(9): 056101
[15] TIAN Bao-Li, DU Zu-Liang, MA Yan-Mei, LI Xue-Fei, CUI Qi-Liang, CUI Tian, LIU Bing-Bing, ZOU Guang-Tian. Raman Investigation of Sodium Titanate Nanotubes under Hydrostatic Pressures up to 26.9GPa[J]. Chin. Phys. Lett., 2010, 27(2): 056101
Viewed
Full text


Abstract