Chin. Phys. Lett.  2016, Vol. 33 Issue (05): 050701    DOI: 10.1088/0256-307X/33/5/050701
GENERAL |
Phase-Sensitive Optical Time-Domain Reflectometer Based on a 120$^{\circ}$-Phase-Difference Michelson Interferometer
Yu-Long Cao1,2, Fei Yang1**, Dan Xu1,2, Qing Ye1, Hai-Wen Cai1**, Zu-Jie Fang1
1Shanghai Key Laboratory of All Solid-state Laser and Applied Techniques, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800
2University of Chinese Academy of Sciences, Beijing 100049
Cite this article:   
Yu-Long Cao, Fei Yang, Dan Xu et al  2016 Chin. Phys. Lett. 33 050701
Download: PDF(2636KB)   PDF(mobile)(KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract A phase-sensitive optical time domain reflectometer ($\phi$-OTDR) based on a 120$^{\circ}$-phase-difference Michelson interferometer is proposed. The Michelson interferometer with arm difference of 4 m is used to test the phase difference between the Rayleigh scattering from two sections of the fiber. A new demodulation method called the inverse transmission matrix demodulation scheme is utilized to demodulate the distributed phase from the backward scattering along the long fiber. The experimental results show that the 120$^{\circ}$-phase-difference interferometer $\phi$-OTDR can detect the phase along the 3 km fiber, and the acoustic signal within the whole human hearing range of 20 Hz–20 kHz is reproduced accurately and quickly.
Received: 15 December 2015      Published: 31 May 2016
PACS:  07.07.Df (Sensors (chemical, optical, electrical, movement, gas, etc.); remote sensing)  
  07.60.Ly (Interferometers)  
  52.38.Bv (Rayleigh scattering; stimulated Brillouin and Raman scattering)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/33/5/050701       OR      https://cpl.iphy.ac.cn/Y2016/V33/I05/050701
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Yu-Long Cao
Fei Yang
Dan Xu
Qing Ye
Hai-Wen Cai
Zu-Jie Fang
[1]Choi A K N, Juarez J C and Taylor H F 2003 Proc. SPIE 5090 134
[2]Juarez J C, Maier W, Kyoo Nam Choi and Taylor H F 2005 J. Lightwave Technol. 23 2081
[3]Lu Y L, Zhu T, Chen L and Bao X Y 2010 J. Lightwave Technol. 28 3243
[4]Healey P and Malyon D J 1982 Electron. Lett. 18 862
[5]Zhou J, Pan Z Q, Ye Q, Cai H W, Qu R H and Fang Z J 2013 J. Lightwave Technol. 31 2947
[6]Pan Z Q, Liang K Z, Ye Q, Cai H W, Qu R H and Fang Z J 2011 Proc. SPIE-OSA-IEEE Asia Commun. Photon. 8311 83110S
[7]Hao Y Q, Ye Q, Pan Z Q, Cai H W and Qu R H 2013 Chin. Phys. B 22 074214
[8]Breguet J and Gisin N 1995 Opt. Lett. 20 1447
[9]Masoudi A, Belal M and Newson T P 2013 Meas. Sci. Technol. 24 085204
[10]Wang C, Wang C, Shang Y, Liu X H and Peng G D 2015 Opt. Commun. 346 172
[11]Yang X D 2013 Chin. Phys. Lett. 30 040701
[12]Priest R G 1982 IEEE J. Quantum Electron. 18 1601
[13]Takushima Y, Choi H Y and Chung Y C 2009 J. Lightwave Technol. 27 718
[14]Xu D, Yang F, Chen D J, Wei F, Cai H W, Fang Z J and Qu R H 2015 Opt. Express 23 22386
Related articles from Frontiers Journals
[1] Shaochun Lin, Tian Tian, Peiran Yin, Pu Huang, Liang Zhang, and Jiangfeng Du. Micro-Gas Flow Induced Stochastic Resonance of a Nonlinear Nanomechanical Resonator[J]. Chin. Phys. Lett., 2021, 38(2): 050701
[2] Zhi Meng, Lei Shen, Zongwei Ma, Muhammad Adnan Aslam, Liqiang Xu, Xueli Xu, Wang Zhu, Long Cheng, Yuecheng Bian, Li Pi, Chun Zhou, Zhigao Sheng. Transient Photoconductivity in LaRhO$_{3}$ Thin Film[J]. Chin. Phys. Lett., 2019, 36(11): 050701
[3] Li-Jun Yang, Yan Li. Pascal Realization by Comb-Spectral-Interferometry Based Refractometer[J]. Chin. Phys. Lett., 2018, 35(10): 050701
[4] Xiang-Mi Zhan, Quan Wang, Kun Wang, Wei Li, Hong-Ling Xiao, Chun Feng, Li-Juan Jiang, Cui-Mei Wang, Xiao-Liang Wang, Zhan-Guo Wang. Fast Electrical Detection of Carcinoembryonic Antigen Based on AlGaN/GaN High Electron Mobility Transistor Aptasensor[J]. Chin. Phys. Lett., 2017, 34(9): 050701
[5] Xiang-Mi Zhan, Mei-Lan Hao, Quan Wang, Wei Li, Hong-Ling Xiao, Chun Feng, Li-Juan Jiang, Cui-Mei Wang, Xiao-Liang Wang, Zhan-Guo Wang. Highly Sensitive Detection of Deoxyribonucleic Acid Hybridization Using Au-Gated AlInN/GaN High Electron Mobility Transistor-Based Sensors[J]. Chin. Phys. Lett., 2017, 34(4): 050701
[6] CHEN Di, ZHAO Bai-Qin, ZHANG Xin. High Signal-to-Noise Ratio Hall Devices with a 2D Structure of Dual δ-Doped GaAs/AlGaAs for Low Field Magnetometry[J]. Chin. Phys. Lett., 2015, 32(12): 050701
[7] ZHANG Yong, XIE Long-Zhen, LI Hai-Rong, WANG Peng, LIU Su, PENG Ying-Quan, ZHANG Miao. Facile Synthesis of Rose-Like NiO Nanoparticles and Their Ethanol Gas-Sensing Property[J]. Chin. Phys. Lett., 2015, 32(09): 050701
[8] M. Chitra, K. Uthayarani, N. Rajasekaran, N. Neelakandeswari, E. K. Girija, D. Pathinettam Padiyan. Rice Husk Templated Mesoporous ZnO Nanostructures for Ethanol Sensing at Room Temperature[J]. Chin. Phys. Lett., 2015, 32(07): 050701
[9] XIAO Li-Ping, WANG Fa-Qiang, LIANG Rui-Sheng, ZOU Shi-Wei, HU Miao. A High-Sensitivity Refractive-Index Sensor Based on Plasmonic Waveguides Asymmetrically Coupled with a Nanodisk Resonator[J]. Chin. Phys. Lett., 2015, 32(07): 050701
[10] ZHANG Yun-Shan, QIAO Xue-Guang, SHAO Min, LIU Qin-Peng. In-Fiber Mach–Zehnder Interferometer Based on Waist-Enlarged Taper and Core-Mismatching for Strain Sensing[J]. Chin. Phys. Lett., 2015, 32(06): 050701
[11] YUAN Heng, ZHANG Ji-Xing, ZHANG Chen, ZHANG Ning, XU Li-Xia, DING Ming, Patrick J. Clarke. Low Gate Voltage Operated Multi-emitter-dot H+ Ion-Sensitive Gated Lateral Bipolar Junction Transistor[J]. Chin. Phys. Lett., 2015, 32(02): 050701
[12] FENG Zhao-Bin, LIU Duo. Enhanced Second-Order Resonance Actuation and Frequency Response Modulation of Microcantilever by Dual Coplanar Counter Electrodes[J]. Chin. Phys. Lett., 2013, 30(10): 050701
[13] HUANG Wan-Xia . Fano-Resonance of a Planar Metamaterial[J]. Chin. Phys. Lett., 2013, 30(7): 050701
[14] CHEN Zong-Qiang, QI Ji-Wei, CHEN Jing, LI Yu-Dong, HAO Zhi-Qiang, LU Wen-Qiang, XU Jing-Jun, SUN Qian . Fano Resonance Based on Multimode Interference in Symmetric Plasmonic Structures and its Applications in Plasmonic Nanosensors[J]. Chin. Phys. Lett., 2013, 30(5): 050701
[15] XU Bin-Zong, LIU Jie-Tao, HU Hai-Feng, WANG Li-Na, WEI Xin, SONG Guo-Feng. A High Sensitivity Index Sensor Based on Magnetic Plasmon Resonance in Metallic Grating with Very Narrow Slits[J]. Chin. Phys. Lett., 2013, 30(4): 050701
Viewed
Full text


Abstract