Chin. Phys. Lett.  2016, Vol. 33 Issue (05): 050502    DOI: 10.1088/0256-307X/33/5/050502
GENERAL |
Travelling Wave in the Generalized Kuramoto Model with Inertia
Di Yuan1**, Dong-Qiu Zhao1, Yi Xiao2, Ying-Xin Zhang3
1School of Physics and Electrical Engineering, Anyang Normal University, Anyang 455000
2Department of Physics, Huazhong University of Science and Technology, Wuhan 430074
3Students' Affairs Division, Henan Vocational College of Nursing, Anyang 455000
Cite this article:   
Di Yuan, Dong-Qiu Zhao, Yi Xiao et al  2016 Chin. Phys. Lett. 33 050502
Download: PDF(1035KB)   PDF(mobile)(KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract We study the dynamics of the generalized Kuramoto model with inertia, in which oscillators with positive coupling strength are conformists and oscillators with negative coupling strength are contrarians. By numerically simulating the model, we find that the model supports a modulated travelling wave state except for already displayed travelling wave states and $\pi$ state in previous literature. The modulated travelling wave state may be characterized by the phase distributions of oscillators. Finally, the modulated travelling wave state and the travelling wave state of the model in the parameter space are presented.
Received: 17 December 2015      Published: 31 May 2016
PACS:  05.45.Xt (Synchronization; coupled oscillators)  
  89.75.-k (Complex systems)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/33/5/050502       OR      https://cpl.iphy.ac.cn/Y2016/V33/I05/050502
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Di Yuan
Dong-Qiu Zhao
Yi Xiao
Ying-Xin Zhang
[1]Kuramoto Y 1975 Lecture Notes in Physics (New York: Springer)
[2]Buck J and Buck E 1976 Sci. Am. 234 74
[3]Yamaguchi S et al 2003 Science 302 1408
[4]Kiss I Z et al 2002 Science 296 1676
[5]Néda Z et al 2000 Phys. Rev. E 61 6987
[6]Heide D et al 2008 Phys. Rev. E 77 056103
[7]Simonsen I et al 2008 Phys. Rev. Lett. 100 218701
[8]Dorfler F et al 2013 Proc. Natl. Acad. Sci. USA 110 2005
[9]Strogatz S H 2000 Physica D 143 1
[10]Ott E 2002 Chaos in Dynamical Systems (Cambridge: Cambridge University Press)
[11]Acebrón J A et al 2005 Rev. Mod. Phys. 77 137
[12]Yuan D and yang J Z 2013 Commun. Theor. Phys. 59 684
[13]Lai Y C et al 2006 Phys. Rev. E 73 026214
[14]Kim B et al 2013 Phys. Rev. E 88 042818
[15]Zang H Y et al 2013 Chin. Phys. Lett. 30 040502
[16]Wu X L and Yang J Z 2014 Chin. Phys. Lett. 31 060507
[17]Feng Y E et al 2014 Chin. Phys. Lett. 31 080503
[18]Ju P and Yang J Z 2015 Chin. Phys. Lett. 32 030502
[19]Tsimring L S et al 2005 Phys. Rev. Lett. 95 014101
[20]Borgers C et al 2003 Neural Comput. 15 509
[21]Louzada V H P et al 2012 Sci. Rep. 2 658
[22]Freeman G M et al 2013 Neuron 78 799
[23]Daido H 1987 Prog. Theor. Phys. 77 622
[24]Borgers C et al 2005 Proc. Natl. Acad. Sci. USA 102 7002
[25]Hong H and Strogatz S H 2011 Phys. Rev. Lett. 106 054102
[26]Hong H and Strogatz S H 2011 Phys. Rev. E 84 046202
[27]Tanaka H A et al 1997 Phys. Rev. Lett. 78 2104
[28]Ermentrout B 1991 J. Math. Biol. 29 571
[29]Salam F et al 1984 IEEE Trans. Circuits Syst. 31 673
[30]Filatrella G et al 2008 Eur. Phys. J. B 61 485
[31]Rohden M et al 2012 Phys. Rev. Lett. 109 064101
[32]Trees B R et al 2005 Phys. Rev. E 71 016215
[33]Ji P et al 2013 Phys. Rev. Lett. 110 218701
[34]Ji P et al 2014 Phys. Rev. E 90 062810
[35]Gupta S et al 2014 Phys. Rev. E 89 022123
[36]Olmi S et al 2014 Phys. Rev. E 90 042905
[37]Jaros P et al 2015 Phys. Rev. E 91 022907
[38]Peron T K D M et al 2015 Phys. Rev. E 91 052805
[39]Ott E and Antonsen T M 2008 Chaos 18 037113
[40]Watanabe S and Strogatz S H 1994 Physica D 74 197
Related articles from Frontiers Journals
[1] Liang Zhang, Tian Tian, Pu Huang, Shaochun Lin, Jiangfeng Du. Coherent Transfer of Excitation in a Nanomechanical Artificial Lattice[J]. Chin. Phys. Lett., 2020, 37(1): 050502
[2] Jing-Hui Li. Effect of Network Size on Collective Motion of Mean Field for a Globally Coupled Map with Disorder[J]. Chin. Phys. Lett., 2016, 33(12): 050502
[3] Nian-Ping Wu, Hong-Yan Cheng, Qiong-Lin Dai, Hai-Hong Li. The Ott–Antonsen Ansatz in Globally Coupled Phase Oscillators[J]. Chin. Phys. Lett., 2016, 33(07): 050502
[4] Liu-Hua Zhu. Effects of Reduced Frequency on Network Configuration and Synchronization Transition[J]. Chin. Phys. Lett., 2016, 33(05): 050502
[5] ZHANG Ji-Qian, HUANG Shou-Fang, PANG Si-Tao, WANG Mao-Sheng, GAO Sheng. Synchronization in the Uncoupled Neuron System[J]. Chin. Phys. Lett., 2015, 32(12): 050502
[6] HU Dong, SUN Xian, LI Ping, CHEN Yan, ZHANG Jie. Factors That Affect the Centrality Controllability of Scale-Free Networks[J]. Chin. Phys. Lett., 2015, 32(12): 050502
[7] SONG Xin-Fang, WANG Wen-Yuan. Target Inactivation and Recovery in Two-Layer Networks[J]. Chin. Phys. Lett., 2015, 32(11): 050502
[8] LIU Yu-Long, YU Xiao-Ming, HAO Yu-Hua. Analytical Results for Frequency-Weighted Kuramoto-Oscillator Networks[J]. Chin. Phys. Lett., 2015, 32(11): 050502
[9] FENG Yue-E, LI Hai-Hong. The Dependence of Chimera States on Initial Conditions[J]. Chin. Phys. Lett., 2015, 32(06): 050502
[10] HAN Fang, WANG Zhi-Jie, FAN Hong, GONG Tao. Robust Synchronization in an E/I Network with Medium Synaptic Delay and High Level of Heterogeneity[J]. Chin. Phys. Lett., 2015, 32(4): 050502
[11] JU Ping, YANG Jun-Zhong. Synchronization Dynamics in a System of Multiple Interacting Populations of Phase Oscillators[J]. Chin. Phys. Lett., 2015, 32(03): 050502
[12] YANG Yan-Jin, DU Ru-Hai, WANG Sheng-Jun, JIN Tao, QU Shi-Xian. Change of State of a Dynamical Unit in the Transition of Coherence[J]. Chin. Phys. Lett., 2015, 32(01): 050502
[13] G. Sivaganesh. An Analytical Study on the Synchronization of Murali–Lakshmanan–Chua Circuits[J]. Chin. Phys. Lett., 2015, 32(01): 050502
[14] ZOU Ying-Ying, LI Hai-Hong. Paths to Synchronization on Complex Networks with External Drive[J]. Chin. Phys. Lett., 2014, 31(10): 050502
[15] FENG Yue-E, LI Hai-Hong, YANG Jun-Zhong. Dynamics of the Kuramoto Model with Bimodal Frequency Distribution on Complex Networks[J]. Chin. Phys. Lett., 2014, 31(08): 050502
Viewed
Full text


Abstract