Chin. Phys. Lett.  2016, Vol. 33 Issue (05): 050302    DOI: 10.1088/0256-307X/33/5/050302
GENERAL |
Entanglement Dynamics of Two Qubits Coupled Independently to Cavities in the Ultrastrong Coupling Regime: Analytical Results
Wei-Ting Zhu1, Qing-Bao Ren1**, Li-Wei Duan2, Qing-Hu Chen2,3**
1College of Engineering and Design, Lishui University, Lishui 323000
2Department of Physics, Zhejiang University, Hangzhou 310027
3Collaborative Innovation Center of Advanced Microstructures, Nanjing 210093
Cite this article:   
Wei-Ting Zhu, Qing-Bao Ren, Li-Wei Duan et al  2016 Chin. Phys. Lett. 33 050302
Download: PDF(419KB)   PDF(mobile)(KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Dynamics of quantum entanglement of two qubits in two identical quantum Rabi models is studied analytically in the framework of corrections to the rotating-wave approximations. A closed-form expression for the entanglement dynamics initiated from the well-known Bell states is derived, which is very close to the numerical exact results up to the ultrastrong coupling regime. It is found that the vanishing entanglement can be purely induced by the counter-rotating terms, and can be enhanced with the atom–cavity coupling.
Received: 17 January 2016      Published: 31 May 2016
PACS:  03.65.Ud (Entanglement and quantum nonlocality)  
  03.65.Yz (Decoherence; open systems; quantum statistical methods)  
  42.50.Ct (Quantum description of interaction of light and matter; related experiments)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/33/5/050302       OR      https://cpl.iphy.ac.cn/Y2016/V33/I05/050302
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Wei-Ting Zhu
Qing-Bao Ren
Li-Wei Duan
Qing-Hu Chen
[1]Einstein A, Podolsky B and Rosen N 1935 Phys. Rev. 47 777
Bell J S 1964 Physics 1 195
[2]Nielsen M A and Chuang I L 2000 Quantum Computation and Quantum Information (Cambridge: Cambridge University Press)
Bennett C H and DiVincenzo D P 2000 Nature 404 247
[3]Yu T and Eberly J H 2004 Phys. Rev. Lett. 93 140404
Yu T and Eberly J H 2006 Phys. Rev. Lett. 97 140403
[4]Almeida M P, de Melo F, Hor-Meyll M, Salles A, Walborn S P, Ribeiro P H S and Davidovich L 2007 Science 316 579
Xu J S, Li C F, Gong M, Zou X B, Shi C H, Chen G and Guo G C 2010 Phys. Rev. Lett. 104 100502
[5]Y?nac M, Yu T and Eberly J H 2006 J. Phys. B 39 S621
[6]Y?nac M, Yu T and Eberly J H 2007 J. Phys. B 40 S45
[7]Chan S, Reid M D and Ficek Z 2009 J. Phys. B 42 065507
[8]Sainz I and Bjork G 2007 Phys. Rev. A 76 042313
[9]Chen Q H, Yang Y, Liu T and Wang K L 2010 Phys. Rev. A 82 052306
[10]Agarwal S, Rafsanjani S M H and Eberly J H 2012 Phys. Rev. A 85 043815
[11]Man Z X, Xia Y J and An N B 2012 Phys. Rev. A 86 052322
[12]Zhang Y Q and Tan L 2011 Eur. Phys. J. D 64 585
[13]Song J, Xia Y, Sun X D, Zhang Y, Liu B and Song H S 2012 Eur. Phys. J. D 66 90
[14]Wang R and Yang G H 2015 Chin. Phys. Lett. 32 020302
[15]Chen X Y 2015 Chin. Phys. Lett. 32 010301
[16]Zeng K and Fang M F 2014 Chin. Phys. Lett. 31 114203
[17]Wang C and Chen Q H 2013 New J. Phys. 15 103020
Duan L, Wang H, Chen Q H and Zhao Y 2013 J. Chem. Phys. 139 044115
[18]Bashkirov E K and Mastyugin M S 2014 Opt. Commun. 313 170
[19]Deng W W, Li G X and Qin H 2015 Phys. Rev. A 91 043831
[20]Bougouffa S and Ficek Z 2015 arXiv:1510.09116 [quant-ph]
[21]Mao L, Liu Y and Zhang Y 2015 arXiv:1512.06387 [quant-ph]
[22]Wallraff A et al 2004 Nature 431 162
Simmonds R W et al 2004 Phys. Rev. Lett. 93 077003
[23]Niemczyk T et al 2010 Nat. Phys. 6 772
[24]Fedorov A, Feofanov A K, Macha P, Forn-Díaz P, Harmans C J P M and Mooij J E 2010 Phys. Rev. Lett. 105 060503
[25]Forn-Díaz P, Lisenfeld J, Marcos D, García-Ripoll J J, Solano E, Harmans C J P M and Mooij J E 2010 Phys. Rev. Lett. 105 237001
[26]Chen Q H, Liu T, Zhang Y Y and Wang K L 2011 Europhys. Lett. 96 14003
[27]Braak D 2011 Phys. Rev. Lett. 107 100401
[28]Chen Q H, Wang C, He S, Liu T and Wang K L 2012 Phys. Rev. A 86 023822
[29]Chen Q H, Zhang Y Y, Liu T and Wang K L 2008 Phys. Rev. A 78 051801(R)
[30]He S, Zhao Y and Chen Q H 2014 Phys. Rev. A 90 053848
He S, Wang C, Chen Q H, Ren X Z, Liu T and Wang K L 2012 Phys. Rev. A 86 033837
[31]Wootters W K 1998 Phys. Rev. Lett. 80 2245
Related articles from Frontiers Journals
[1] Jian Li, Yang Zhou, and Qin Wang. Demonstration of Einstein–Podolsky–Rosen Steering with Multiple Observers via Sequential Measurements[J]. Chin. Phys. Lett., 2022, 39(11): 050302
[2] Dian Zhu, Wei-Min Shang, Fu-Lin Zhang, and Jing-Ling Chen. Quantum Cloning of Steering[J]. Chin. Phys. Lett., 2022, 39(7): 050302
[3] Shaowei Li, Daojin Fan, Ming Gong, Yangsen Ye, Xiawei Chen, Yulin Wu, Huijie Guan, Hui Deng, Hao Rong, He-Liang Huang, Chen Zha, Kai Yan, Shaojun Guo, Haoran Qian, Haibin Zhang, Fusheng Chen, Qingling Zhu, Youwei Zhao, Shiyu Wang, Chong Ying, Sirui Cao, Jiale Yu, Futian Liang, Yu Xu, Jin Lin, Cheng Guo, Lihua Sun, Na Li, Lianchen Han, Cheng-Zhi Peng, Xiaobo Zhu, and Jian-Wei Pan. Realization of Fast All-Microwave Controlled-Z Gates with a Tunable Coupler[J]. Chin. Phys. Lett., 2022, 39(3): 050302
[4] Heng-Xi Ji, Lin-Han Mo, and Xin Wan. Dynamics of the Entanglement Zero Modes in the Haldane Model under a Quantum Quench[J]. Chin. Phys. Lett., 2022, 39(3): 050302
[5] Yanbo Lou, Xiaoyin Xu, Shengshuai Liu, and Jietai Jing. Low-Noise Intensity Amplification of a Bright Entangled Beam[J]. Chin. Phys. Lett., 2021, 38(9): 050302
[6] Xin-Wei Zha , Min-Rui Wang, and Ruo-Xu Jiang . Constructing a Maximally Entangled Seven-Qubit State via Orthogonal Arrays[J]. Chin. Phys. Lett., 2020, 37(9): 050302
[7] Lin-Han Mo, Qiu-Lan Zhang, Xin Wan. Dynamics of the Entanglement Spectrum of the Haldane Model under a Sudden Quench *[J]. Chin. Phys. Lett., 0, (): 050302
[8] Lin-Han Mo, Qiu-Lan Zhang, Xin Wan. Dynamics of the Entanglement Spectrum of the Haldane Model under a Sudden Quench[J]. Chin. Phys. Lett., 2020, 37(6): 050302
[9] Qi-Cheng Tang, Wei Zhu. Critical Scaling Behaviors of Entanglement Spectra[J]. Chin. Phys. Lett., 2020, 37(1): 050302
[10] Qian Dong, M. A. Mercado Sanchez, Guo-Hua Sun, Mohamad Toutounji, Shi-Hai Dong. Tripartite Entanglement Measures of Generalized GHZ State in Uniform Acceleration[J]. Chin. Phys. Lett., 2019, 36(10): 050302
[11] Si-Yuan Liu, Feng-Lin Wu, Yao-Zhong Zhang, Heng Fan. Strong Superadditive Deficit of Coherence and Quantum Correlations Distribution[J]. Chin. Phys. Lett., 2019, 36(8): 050302
[12] Jie Zhou, Hui-Xian Meng, Jing-Ling Chen. Detecting Quantumness in the $n$-cycle Exclusivity Graphs[J]. Chin. Phys. Lett., 2019, 36(8): 050302
[13] Feng-Lin Wu, Si-Yuan Liu, Wen-Li Yang, Heng Fan. Construction of Complete Orthogonal Genuine Multipartite Entanglement State[J]. Chin. Phys. Lett., 2019, 36(6): 050302
[14] Wen-Bin He, Xi-Wen Guan. Exact Entanglement Dynamics in Three Interacting Qubits[J]. Chin. Phys. Lett., 2018, 35(11): 050302
[15] Meng Qin, Li Wang, Bili Wang, Xiao Wang, Zhong Bai, Yanbiao Li. Renormalization of Tripartite Entanglement in Spin Systems with Dzyaloshinskii–Moriya Interaction[J]. Chin. Phys. Lett., 2018, 35(10): 050302
Viewed
Full text


Abstract