GENERAL |
|
|
|
|
Entanglement Dynamics of Two Qubits Coupled Independently to Cavities in the Ultrastrong Coupling Regime: Analytical Results |
Wei-Ting Zhu1, Qing-Bao Ren1**, Li-Wei Duan2, Qing-Hu Chen2,3** |
1College of Engineering and Design, Lishui University, Lishui 323000 2Department of Physics, Zhejiang University, Hangzhou 310027 3Collaborative Innovation Center of Advanced Microstructures, Nanjing 210093
|
|
Cite this article: |
Wei-Ting Zhu, Qing-Bao Ren, Li-Wei Duan et al 2016 Chin. Phys. Lett. 33 050302 |
|
|
Abstract Dynamics of quantum entanglement of two qubits in two identical quantum Rabi models is studied analytically in the framework of corrections to the rotating-wave approximations. A closed-form expression for the entanglement dynamics initiated from the well-known Bell states is derived, which is very close to the numerical exact results up to the ultrastrong coupling regime. It is found that the vanishing entanglement can be purely induced by the counter-rotating terms, and can be enhanced with the atom–cavity coupling.
|
|
Received: 17 January 2016
Published: 31 May 2016
|
|
PACS: |
03.65.Ud
|
(Entanglement and quantum nonlocality)
|
|
03.65.Yz
|
(Decoherence; open systems; quantum statistical methods)
|
|
42.50.Ct
|
(Quantum description of interaction of light and matter; related experiments)
|
|
|
|
|
[1] | Einstein A, Podolsky B and Rosen N 1935 Phys. Rev. 47 777 | | Bell J S 1964 Physics 1 195 | [2] | Nielsen M A and Chuang I L 2000 Quantum Computation and Quantum Information (Cambridge: Cambridge University Press) | | Bennett C H and DiVincenzo D P 2000 Nature 404 247 | [3] | Yu T and Eberly J H 2004 Phys. Rev. Lett. 93 140404 | | Yu T and Eberly J H 2006 Phys. Rev. Lett. 97 140403 | [4] | Almeida M P, de Melo F, Hor-Meyll M, Salles A, Walborn S P, Ribeiro P H S and Davidovich L 2007 Science 316 579 | | Xu J S, Li C F, Gong M, Zou X B, Shi C H, Chen G and Guo G C 2010 Phys. Rev. Lett. 104 100502 | [5] | Y?nac M, Yu T and Eberly J H 2006 J. Phys. B 39 S621 | [6] | Y?nac M, Yu T and Eberly J H 2007 J. Phys. B 40 S45 | [7] | Chan S, Reid M D and Ficek Z 2009 J. Phys. B 42 065507 | [8] | Sainz I and Bjork G 2007 Phys. Rev. A 76 042313 | [9] | Chen Q H, Yang Y, Liu T and Wang K L 2010 Phys. Rev. A 82 052306 | [10] | Agarwal S, Rafsanjani S M H and Eberly J H 2012 Phys. Rev. A 85 043815 | [11] | Man Z X, Xia Y J and An N B 2012 Phys. Rev. A 86 052322 | [12] | Zhang Y Q and Tan L 2011 Eur. Phys. J. D 64 585 | [13] | Song J, Xia Y, Sun X D, Zhang Y, Liu B and Song H S 2012 Eur. Phys. J. D 66 90 | [14] | Wang R and Yang G H 2015 Chin. Phys. Lett. 32 020302 | [15] | Chen X Y 2015 Chin. Phys. Lett. 32 010301 | [16] | Zeng K and Fang M F 2014 Chin. Phys. Lett. 31 114203 | [17] | Wang C and Chen Q H 2013 New J. Phys. 15 103020 | | Duan L, Wang H, Chen Q H and Zhao Y 2013 J. Chem. Phys. 139 044115 | [18] | Bashkirov E K and Mastyugin M S 2014 Opt. Commun. 313 170 | [19] | Deng W W, Li G X and Qin H 2015 Phys. Rev. A 91 043831 | [20] | Bougouffa S and Ficek Z 2015 arXiv:1510.09116 [quant-ph] | [21] | Mao L, Liu Y and Zhang Y 2015 arXiv:1512.06387 [quant-ph] | [22] | Wallraff A et al 2004 Nature 431 162 | | Simmonds R W et al 2004 Phys. Rev. Lett. 93 077003 | [23] | Niemczyk T et al 2010 Nat. Phys. 6 772 | [24] | Fedorov A, Feofanov A K, Macha P, Forn-Díaz P, Harmans C J P M and Mooij J E 2010 Phys. Rev. Lett. 105 060503 | [25] | Forn-Díaz P, Lisenfeld J, Marcos D, García-Ripoll J J, Solano E, Harmans C J P M and Mooij J E 2010 Phys. Rev. Lett. 105 237001 | [26] | Chen Q H, Liu T, Zhang Y Y and Wang K L 2011 Europhys. Lett. 96 14003 | [27] | Braak D 2011 Phys. Rev. Lett. 107 100401 | [28] | Chen Q H, Wang C, He S, Liu T and Wang K L 2012 Phys. Rev. A 86 023822 | [29] | Chen Q H, Zhang Y Y, Liu T and Wang K L 2008 Phys. Rev. A 78 051801(R) | [30] | He S, Zhao Y and Chen Q H 2014 Phys. Rev. A 90 053848 | | He S, Wang C, Chen Q H, Ren X Z, Liu T and Wang K L 2012 Phys. Rev. A 86 033837 | [31] | Wootters W K 1998 Phys. Rev. Lett. 80 2245 |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|