Chin. Phys. Lett.  2016, Vol. 33 Issue (04): 048901    DOI: 10.1088/0256-307X/33/4/048901
CROSS-DISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY |
A Collaboration Network Model with Multiple Evolving Factors
Xiu-Lian Xu1**, Chun-Ping Liu2, Da-Ren He1
1College of Physics Science and Technology, Yangzhou University, Yangzhou 225002
2College of Mathematical Science, Yangzhou University, Yangzhou 225002
Cite this article:   
Xiu-Lian Xu, Chun-Ping Liu, Da-Ren He 2016 Chin. Phys. Lett. 33 048901
Download: PDF(583KB)   PDF(mobile)(KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract To describe the empirical data of collaboration networks, several evolving mechanisms have been proposed, which usually introduce different dynamics factors controlling the network growth. These models can reasonably reproduce the empirical degree distributions for a number of well-studied real-world collaboration networks. On the basis of the previous studies, in this work we propose a collaboration network model in which the network growth is simultaneously controlled by three factors, including partial preferential attachment, partial random attachment and network growth speed. By using a rate equation method, we obtain an analytical formula for the act degree distribution. We discuss the dependence of the act degree distribution on these different dynamics factors. By fitting to the empirical data of two typical collaboration networks, we can extract the respective contributions of these dynamics factors to the evolution of each networks.
Received: 24 January 2016      Published: 29 April 2016
PACS:  89.75.Hc (Networks and genealogical trees)  
  89.75.Fb (Structures and organization in complex systems)  
  89.40.-a (Transportation)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/33/4/048901       OR      https://cpl.iphy.ac.cn/Y2016/V33/I04/048901
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Xiu-Lian Xu
Chun-Ping Liu
Da-Ren He
[1]Pastor-Satorras R and Vespignani A 2004 Evolution and Structure of the Internet: A Statistical Physics Approach (Cambridge: Cambridge University Press)
[2]Faloutsos M et al 1999 Comput. Commun. Rev. 29 251
[3]Goswami B et al 2015 Sci. Rep. 5 18183
[4]Albert R et al 1999 Nature 401 130
[5]Schwartz A et al 2016 Med. Teach. 38 64
[6]Wagner A 2001 Mol. Biol. E 18 1283
[7]Li W F et al 2011 Proc. Natl. Acad. Sci. USA 108 3504
[8]Podani J et al 2001 Nat. Genet. 29 54
[9]Stelling J et al 2002 Nature 420 190
[10]Jeong H et al 2001 Nature 411 41
[11]Solé R V et al 2002 Adv. Complex Syst. 5 43
[12]Vazquez A et al 2003 Nat. Biotechnol. 21 697
[13]Wachs-Lopes G A and Rodrigues P S 2016 Expert Syst. Appl. 45 8
[14]Wasserman S and Faust K 1994 Social Network Analysis (Cambridge: Cambridge University Press)
[15]Yang J and Leskovec J 2015 Knowled Ge Inf. Syst. 42 181
[16]Newman M E J 2003 SIAM Rev. 45 167
[17]Opsahl T 2013 Soc. Networks 35 159
[18]Albert R and Barabási A L 2000 Phys. Rev. Lett. 85 5234
[19]Watts D J and Strogatz S H 1998 Nature 393 440
[20]Newman M E J et al 2002 Proc. Natl. Acad. Sci. USA 99 2566
[21]Ramasco J J, Dorogovtsev S N and Pastor-Satorras R 2004 Phys. Rev. E 70 036106
[22]Abbasi1A and Altmann J 2011 Proceedings of the 44th Hawaii International Conference on System Sciences
[23]Barabási A L, Jeong H, Ravasz R, Neda Z, Vicsek T and Schubert A 2002 Physica A 311 590
[24]Balland P A 2012 Regional Studies 46 741
[25]Wang J R, Wang J P, He Z and Xu H T 2016 Commun. Nonlinear Sci. Numer. Simul.on 31 47
[26]Chang H, Xu X L, Hu C K, Fu C H, Feng A X and He D R 2014 Physica A 416 378
[27]Zhang P P, Chen K, HeY, Zhou T, Su B B, Jin Y D, Chang H, Zhou Y P, Sun L C, Wang B H and He D R 2006 Physica A 360 599
[28]Chang H, Su B B, Zhou Y P and He D R 2007 Physica A 383 687
[29]Yan X Y and Wang M S 2010 Acta Phys. Sin. 59 851 (in Chinese)
[30]Xu X L, Qu Y Q, Guan S, Jiang Y M and He D R 2011 Europhys. Lett. 93 68002
[31]Xu X L, Fu C H, Chang H and He D R 2011 Physica A 390 3719
[32]Zhou T, Wang B H, Jin Y D, He D R, Zhang P P, He Y, Su B B, Chen K, Zhang Z Z and Liu Z H 2007 Int. J. Mod. Phys. C 18 297
[33]Krapivsky P L, Redner S and Leyvraz F 2000 Phys. Rev. Lett. 85 4629
[34]Liu Z H, Lai Y C L, Ye N and Dasgupta P 2002 Phys. Lett. A 303 337
[35]Zhao Q G, Kong X X and Hou Z T 2009 Pramana J. Phys. 73 955
[36]Feng A X, Fu C H, Xu X L, Zhou Y P, Chang H, Wang J, He D R and Feng G L 2012 Physica A 391 2454
Related articles from Frontiers Journals
[1] Qing-Xian Wang, Jun-Jie Zhang, Xiao-Yu Shi, Ming-Sheng Shang. User Heterogeneity and Individualized Recommender[J]. Chin. Phys. Lett., 2017, 34(6): 048901
[2] Wen Xiao, Chao Yang, Ya-Ping Yang, Yu-Guang Chen. Phase Transition in Recovery Process of Complex Networks[J]. Chin. Phys. Lett., 2017, 34(5): 048901
[3] Rui-Wu Niu, Gui-Jun Pan. Self-Organized Optimization of Transport on Complex Networks[J]. Chin. Phys. Lett., 2016, 33(06): 048901
[4] Liu-Hua Zhu. Effects of Reduced Frequency on Network Configuration and Synchronization Transition[J]. Chin. Phys. Lett., 2016, 33(05): 048901
[5] Wei Zheng, Qian Pan, Chen Sun, Yu-Fan Deng, Xiao-Kang Zhao, Zhao Kang. Fractal Analysis of Mobile Social Networks[J]. Chin. Phys. Lett., 2016, 33(03): 048901
[6] Yi-Run Ruan, Song-Yang Lao, Yan-Dong Xiao, Jun-De Wang, Liang Bai. Identifying Influence of Nodes in Complex Networks with Coreness Centrality: Decreasing the Impact of Densely Local Connection[J]. Chin. Phys. Lett., 2016, 33(02): 048901
[7] HU Dong, SUN Xian, LI Ping, CHEN Yan, ZHANG Jie. Factors That Affect the Centrality Controllability of Scale-Free Networks[J]. Chin. Phys. Lett., 2015, 32(12): 048901
[8] HUANG Feng, CHEN Han-Shuang, SHEN Chuan-Sheng. Phase Transitions of Majority-Vote Model on Modular Networks[J]. Chin. Phys. Lett., 2015, 32(11): 048901
[9] BAI Liang, XIAO Yan-Dong, HOU Lv-Lin, LAO Song-Yang. Smart Rewiring: Improving Network Robustness Faster[J]. Chin. Phys. Lett., 2015, 32(07): 048901
[10] LI Ling, GUAN Ji-Hong, ZHOU Shui-Geng. Efficiency-Controllable Random Walks on a Class of Recursive Scale-Free Trees with a Deep Trap[J]. Chin. Phys. Lett., 2015, 32(03): 048901
[11] JING Xing-Li, LING Xiang, HU Mao-Bin, SHI Qing. Random Walks on Deterministic Weighted Scale-Free Small-World Networks with a Perfect Trap[J]. Chin. Phys. Lett., 2014, 31(08): 048901
[12] HU Jian-Quan, YANG Hong-Chun, YANG Yu-Ming, FU Chuan-Ji, YANG Chun, SHI Xiao-Hong, JIA Xiao. Two Typical Discontinuous Transitions Observed in a Generalized Achlioptas Percolation Process[J]. Chin. Phys. Lett., 2014, 31(07): 048901
[13] LING Xiang. Effect of Mixing Assortativity on Extreme Events in Complex Networks[J]. Chin. Phys. Lett., 2014, 31(06): 048901
[14] ZHANG Xiao-Ke, WU Jun, TAN Yue-Jin, DENG Hong-Zhong, LI Yong . Structural Robustness of Weighted Complex Networks Based on Natural Connectivity[J]. Chin. Phys. Lett., 2013, 30(10): 048901
[15] ZHANG Yong, JU Xian-Meng, ZHANG Li-Jie, XU Xin-Jian. Statistics of Leaders in Index-Driven Networks[J]. Chin. Phys. Lett., 2013, 30(5): 048901
Viewed
Full text


Abstract