Chin. Phys. Lett.  2016, Vol. 33 Issue (04): 048502    DOI: 10.1088/0256-307X/33/4/048502
CROSS-DISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY |
Low Crosstalk Three-Color Infrared Detector by Controlling the Minority Carriers Type of InAs/GaSb Superlattices for Middle-Long and Very-Long Wavelength
Dong-Wei Jiang1, Wei Xiang2,3, Feng-Yun Guo1**, Hong-Yue Hao2,3, Xi Han2,3, Xiao-Chao Li1, Guo-Wei Wang2,3, Ying-Qiang Xu2,3, Qing-Jiang Yu1, Zhi-Chuan Niu2,3**
1Opto-electric Information Science, School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001
2State Key Laboratory for Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083
3Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei 230026
Cite this article:   
Dong-Wei Jiang, Wei Xiang, Feng-Yun Guo et al  2016 Chin. Phys. Lett. 33 048502
Download: PDF(709KB)   PDF(mobile)(KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract We report a type-II InAs/GaSb superlattice three-color infrared detector for mid-wave (MW), long-wave (LW), and very long-wave (VLW) detections. The detector structure consists of three contacts of NIPIN architecture for MW and LW detections, and hetero-junction NIP architecture for VLW detection. It is found that the spectral crosstalks can be significantly reduced by controlling the minority carriers transport via doping beryllium in the two active regions of NIPIN section. The crosstalk detection at MW, LW, and VLW signals are achieved by selecting the bias voltages on the device. At 77 K, the cutoff wavelengths of the three-color detection are 5.3 μm (at 0 mV), 14 μm (at 300 mV) and 19 μm (at $-$20 mV) with the detectivities of 4.6$\times$10$^{11}$ cm$\cdot$Hz$^{1/2}$W$^{-1}$, 2.3$\times$10$^{10}$ cm$\cdot$Hz$^{1/2}$W$^{-1}$, and 1.0$\times$10$^{10}$ cm$\cdot$Hz$^{1/2}$W$^{-1}$ for MW, LW and VLW. The crosstalks of the MW channel, LW channel, and VLW channel are almost 0, 0.25, and 0.6, respectively.
Received: 10 December 2015      Published: 29 April 2016
PACS:  85.60.Gz (Photodetectors (including infrared and CCD detectors))  
  68.65.Cd (Superlattices)  
  72.20.Jv (Charge carriers: generation, recombination, lifetime, and trapping)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/33/4/048502       OR      https://cpl.iphy.ac.cn/Y2016/V33/I04/048502
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Dong-Wei Jiang
Wei Xiang
Feng-Yun Guo
Hong-Yue Hao
Xi Han
Xiao-Chao Li
Guo-Wei Wang
Ying-Qiang Xu
Qing-Jiang Yu
Zhi-Chuan Niu
[1]Rehm R et al 2011 J. Electron. Mater. 40 1738
[2]Plis E A et al 2011 IEEE J. Photovoltaics 3 234
[3]Gunapala S D et al 2000 IEEE Trans. Electron Devices 47 963
[4]Mohseni H et al 2001 Appl. Phys. Lett. 78 2107
[5]Delaunay P Y et al 2008 Appl. Phys. Lett. 92 111112
[6]Huang E K W et al 2011 Opt. Lett. 36 2560
[7]Huang E K W et al 2012 Opt. Lett. 37 4744
[8]Zhang Y Z et al 2012 Appl. Phys. Lett. 100 173511
[9]Plis E et al 2013 Infrared Phys. Technol. 59 28
[10]Gautam N et al 2011 Appl. Phys. Lett. 98 121106
[11]Hoffman D et al 2007 Appl. Phys. Lett. 91 143507
[12]Gautam N et al 2010 Appl. Phys. Lett. 96 231107
[13]Nguyen B M et al 2007 Appl. Phys. Lett. 91 163511
[14]Ting D Z Y et al 2009 Appl. Phys. Lett. 95 023508
[15]Rodriguez J B et al 2007 Appl. Phys. Lett. 91 043514
[16]Kim H S et al 2008 Appl. Phys. Lett. 92 183502
[17]Jiang D W et al 2014 Soc. Photo-Opt. Instrum. Eng. (SPIE) Conf. Ser. 9300 93001L-1
[18]Wang G W et al 2010 Chin. Phys. Lett. 27 077305
Related articles from Frontiers Journals
[1] Yuan-Fang Yu, Ye Zhang, Fan Zhong, Lin Bai, Hui Liu, Jun-Peng Lu, and Zhen-Hua Ni. Highly Sensitive Mid-Infrared Photodetector Enabled by Plasmonic Hot Carriers in the First Atmospheric Window[J]. Chin. Phys. Lett., 2022, 39(5): 048502
[2] Yu Zhao, Yan Teng, Jing-Jun Miao, Qi-Hua Wu, Jing-Jing Gao, Xin Li, Xiu-Jun Hao, Ying-Chun Zhao, Xu Dong, Min Xiong, Yong Huang. Mid-Infrared InAs/GaSb Superlattice Planar Photodiodes Fabricated by Metal–Organic Chemical Vapor Deposition *[J]. Chin. Phys. Lett., 0, (): 048502
[3] Lin-Lin Su , Dong Zhou, Qing Liu , Fang-Fang Ren , Dun-Jun Chen , Rong Zhang , You-Dou Zheng , Hai Lu. Effect of a Single Threading Dislocation on Electrical and Single Photon Detection Characteristics of 4H-SiC Ultraviolet Avalanche Photodiodes *[J]. Chin. Phys. Lett., 0, (): 048502
[4] Yu Zhao, Yan Teng, Jing-Jun Miao, Qi-Hua Wu, Jing-Jing Gao, Xin Li, Xiu-Jun Hao, Ying-Chun Zhao, Xu Dong, Min Xiong, Yong Huang. Mid-Infrared InAs/GaSb Superlattice Planar Photodiodes Fabricated by Metal–Organic Chemical Vapor Deposition[J]. Chin. Phys. Lett., 2020, 37(6): 048502
[5] Lin-Lin Su , Dong Zhou, Qing Liu , Fang-Fang Ren , Dun-Jun Chen , Rong Zhang , You-Dou Zheng , Hai Lu. Effect of a Single Threading Dislocation on Electrical and Single Photon Detection Characteristics of 4H-SiC Ultraviolet Avalanche Photodiodes[J]. Chin. Phys. Lett., 2020, 37(6): 048502
[6] Xiu-Li Li, Zhi Liu, Lin-Zhi Peng, Xiang-Quan Liu, Nan Wang, Yue Zhao, Jun Zheng, Yu-Hua Zuo, Chun-Lai Xue, Bu-Wen Cheng. High-Performance Germanium Waveguide Photodetectors on Silicon[J]. Chin. Phys. Lett., 2020, 37(3): 048502
[7] Bing-Cheng Du, Zhao-Hui Li, Guang-Yue Shen, Tian-Xiang Zheng, Hai-Yan Zhang, Lei Yang, Guang Wu. A Photon-Counting Full-Waveform Lidar[J]. Chin. Phys. Lett., 2019, 36(9): 048502
[8] Xue-Hui Lu, Cheng-Bin Jing, Lian-Wei Wang, Jun-Hao Chu. An Improved Room-Temperature Silicon Terahertz Photodetector on Sapphire Substrates[J]. Chin. Phys. Lett., 2019, 36(9): 048502
[9] Ben Du, Yi Gu, Yong-Gang Zhang, Xing-You Chen, Ying-Jie Ma, Yan-Hui Shi, Jian Zhang. Wavelength Extended InGaAsBi Detectors with Temperature-Insensitive Cutoff Wavelength[J]. Chin. Phys. Lett., 2018, 35(7): 048502
[10] Ming Wei, Chun-Xiang Xu, Fei-Fei Qin, Arumugam Gowri Manohari, Jun-Feng Lu, Qiu-Xiang Zhu. Optical Field Confinement Enhanced Single ZnO Microrod UV Photodetector[J]. Chin. Phys. Lett., 2017, 34(7): 048502
[11] Yang Li, Sheng-Kai Liao, Fu-Tian Liang, Qi Shen, Hao Liang, Cheng-Zhi Peng. Post-processing Free Quantum Random Number Generator Based on Avalanche Photodiode Array[J]. Chin. Phys. Lett., 2016, 33(03): 048502
[12] LIU Fei, ZHOU Dong, LU Hai, CHEN Dun-Jun, REN Fang-Fang, ZHANG Rong, ZHENG You-Dou. Passive Quenching Electronics for Geiger Mode 4H-SiC Avalanche Photodiodes[J]. Chin. Phys. Lett., 2015, 32(12): 048502
[13] LV Qian-Qian, YE Han, YIN Dong-Dong, YANG Xiao-Hong, HAN Qin. An Array Consisting of 10 High-Speed Side-Illuminated Evanescently Coupled Waveguide Photodetectors Each with a Bandwidth of 20 GHz[J]. Chin. Phys. Lett., 2015, 32(12): 048502
[14] WENG Qian-Chun, AN Zheng-Hua, XIONG Da-Yuan, ZHU Zi-Qiang. Quantum Coupling Effect between Quantum Dot and Quantum Well in a Resonant Tunneling Photon-Number-Resolving Detector[J]. Chin. Phys. Lett., 2015, 32(10): 048502
[15] LIU Fei, YANG Sen, ZHOU Dong, LU Hai, ZHANG Rong, ZHENG You-Dou. Discrimination Voltage and Overdrive Bias Dependent Performance Evaluation of Passively Quenched SiC Single-Photon-Counting Avalanche Photodiodes[J]. Chin. Phys. Lett., 2015, 32(08): 048502
Viewed
Full text


Abstract