Chin. Phys. Lett.  2016, Vol. 33 Issue (04): 048201    DOI: 10.1088/0256-307X/33/4/048201
CROSS-DISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY |
Prediction of Henry Constants and Adsorption Mechanism of Volatile Organic Compounds on Multi-Walled Carbon Nanotubes by Using Support Vector Regression
Wen-De Cheng, Cong-Zhong Cai**
State Key Laboratory of Coal Mine Disaster Dynamics and Control, Department of Applied Physics, Chongqing University, Chongqing 400044
Cite this article:   
Wen-De Cheng, Cong-Zhong Cai 2016 Chin. Phys. Lett. 33 048201
Download: PDF(626KB)   PDF(mobile)(KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Support vector regression (SVR) combined with particle swarm optimization for its parameter optimization is employed to establish a model for predicting the Henry constants of multi-walled carbon nanotubes (MWNTs) for adsorption of volatile organic compounds (VOCs). The prediction performance of SVR is compared with those of the model of theoretical linear salvation energy relationship (TLSER). By using leave-one-out cross validation of SVR test Henry constants for adsorption of 35 VOCs on MWNTs, the root mean square error is 0.080, the mean absolute percentage error is only 1.19%, and the correlation coefficient $(R^{2})$ is as high as 0.997. Compared with the results of the TLSER model, it is shown that the estimated errors by SVR are all smaller than those achieved by TLSER. It reveals that the generalization ability of SVR is superior to that of the TLSER model. Meanwhile, multifactor analysis is adopted for investigation of the influences of each molecular structure descriptor on the Henry constants. According to the TLSER model, the adsorption mechanism of adsorption of carbon nanotubes of VOCs is mainly a result of van der Waals and interactions of hydrogen bonds. These can provide the theoretical support for the application of carbon nanotube adsorption of VOCs and can make up for the lack of experimental data.
Received: 30 October 2015      Published: 29 April 2016
PACS:  82.20.Wt (Computational modeling; simulation)  
  07.05.Tp (Computer modeling and simulation)  
  89.60.Ec (Environmental safety)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/33/4/048201       OR      https://cpl.iphy.ac.cn/Y2016/V33/I04/048201
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Wen-De Cheng
Cong-Zhong Cai
[1]Phillips M et al 1999 J. Chromatogr. B 729 75
[2]Rahman M M and Kim K H 2014 Atmos. Environ. 85 266
[3]Walton C et al 2013 Inflamm. Bowel Dis. 19 2069
[4]Yang K and Xing B S 2010 Chem. Rev. 110 5989
[5]Diaz E et al 2007 J. Colloid Interface Sci. 305 7
[6]Pan B and Xing B 2008 Environ. Sci. Technol. 42 9005
[7]Kah M et al 2011 Environ. Sci. Technol. 45 6011
[8]Yang K et al 2006 Environ. Sci. Technol. 40 5804
[9]Vapnik V 1995 The Nature of Statistical Learning Theory (New York: Springer Verlag)
[10]Lin K P and Pai P F 2010 Expert Syst. Appl. 37 5430
[11]Cai C Z et al 2010 J. Supercond. Novel Magn. 23 737
[12]Wen Y F et al 2009 Corros. Sci. 51 349
[13]Cai C Z et al 2003 Math. Biosci. 185 111
[14]Cai C Z et al 2003 Int. J. Mod. Phys. C 14 575
[15]Cai C Z et al 2013 Physica C 493 100
[16]Tang J L et al 2012 Mod. Phys. Lett. B 26 1250121
[17]Pei J F et al 2013 Macromol. Theor. Simul. 22 52
[18]Xiao T T et al 2013 Int. J. Mod. Phys. B 27 1362040
[19]Cai C Z et al 2004 Proteins 55 66
[20]Cai C Z et al 2003 Nucleic Acids Res. 31 3692
[21]Kharrat A et al 2011 Int. J. Software Sci. Comput. Intell. 3 19
[22]Yi J et al 2012 Int. J. Software Sci. Comput. Intell. 4 41
[23]Eberhart R and Kennedy J 1995 Proc. Sixth Intl. Symp. on Micro Machine and Human Science p 39
[24]Kennedy J and Eberhart R 1995 Proc. IEEE Intl. Conf. on Neural Networks p 1942
[25]Zhou Y R 2012 Master Thesis (The Adsorption Mechanism of Volatile Organic Compounds on Carbon Nanotubes) (Dalian: Dalian University of Technology) (in Chinese)
[26]Ross P D and Subramanian S 1981 Biochemistry 20 3096
[27]Glen R C 1994 J. Comput. Aided Mol. 8 457
[28]Long R Q and Yang R T 2001 J. Am. Chem. Soc. 123 2058
[29]Fagan S B et al 2004 Nano Lett. 4 1285
[30]Hilding J et al 2001 Langmuir 17 7540
[31]Zhao J and Lu J 2003 Appl. Phys. Lett. 82 3746
[32]Umeyama H and Morokuma K 1977 J. Am. Chem. Soc. 99 1316
[33]Hagelin H et al 1995 Can. J. Chem. 73 483
[34]Peralta-Inga Z et al 2003 Nano Lett. 3 21
Related articles from Frontiers Journals
[1] Shuai Zhang, Yang Song, Hang Li, Jin-Mei Li, Kai Qian, Chen Liu, Jia-Ou Wang, Tian Qian, Yu-Yang Zhang, Jian-Chen Lu, Hong Ding, Xiao Lin, Jinbo Pan, Shi-Xuan Du, Hong-Jun Gao. Experimental Synthesis of Strained Monolayer Silver Arsenide on Ag(111) Substrates *[J]. Chin. Phys. Lett., 0, (): 048201
[2] Shuai Zhang, Yang Song, Hang Li, Jin-Mei Li, Kai Qian, Chen Liu, Jia-Ou Wang, Tian Qian, Yu-Yang Zhang, Jian-Chen Lu, Hong Ding, Xiao Lin, Jinbo Pan, Shi-Xuan Du, Hong-Jun Gao. Experimental Synthesis of Strained Monolayer Silver Arsenide on Ag(111) Substrates[J]. Chin. Phys. Lett., 2020, 37(6): 048201
[3] ZHOU Zheng-Qing, NIE Jian-Xin, GUO Xue-Yong, WANG Qiu-Shi, OU Zhuo-Cheng, JIAO Qing-Jie. A New Method for Determining the Equation of State of Aluminized Explosive[J]. Chin. Phys. Lett., 2015, 32(01): 048201
[4] ZHU Guang-Yao, GU Shu-Lin**, ZHU Shun-Ming, TANG Kun, YE Jian-Dong, ZHANG Rong, SHI Yi, ZHENG You-Dou . Simulation and Suppression of the Gas Phase Pre-reaction in Metal-Organic Chemical Vapor Deposition of ZnO[J]. Chin. Phys. Lett., 2011, 28(11): 048201
[5] K. Iqbal, A. Basit** . A Monte Carlo Simulation of a Monomer Dimer CO-O2 Catalytic Reaction on the Surface and Subsurface of a Face-centered Cubic Lattice[J]. Chin. Phys. Lett., 2011, 28(4): 048201
[6] WANG Xin-Xin, BAO Jing-Dong. A Scheme for Information Erasure in a Double-Well Potential[J]. Chin. Phys. Lett., 2010, 27(2): 048201
[7] TAN Shuai-Xia, LU Xiao-Ying, LI Wen, ZHAO Ning, ZHANG Xiao-Li, XU Jian. A Thermodynamic Analysis of the Validity of Wenzel and Cassie's Equations[J]. Chin. Phys. Lett., 2009, 26(8): 048201
[8] LUO Ming-Yan, SONG Kun, ZHANG Xu, LEE Imshik. Mechanism for Alternating Electric Fields Induced-Effects on Cytosolic Calcium[J]. Chin. Phys. Lett., 2009, 26(1): 048201
[9] HUNDUR Yakup, GUVENC Ziya B, HIPPLER Rainer. Dynamical Analysis of Sputtering at Threshold Energy Range: Modelling of Ar+Ni(100) Collision System[J]. Chin. Phys. Lett., 2008, 25(2): 048201
[10] CHEN Jia-Rong, CHEN Wen-Jin, WANG Yu-Qi, QIU Kai, LI Xin-Hua, ZHONG Fei, YIN Zhi-Jun, JI Chang-Jian, CAO Xian-Cun, HAN Qi-Feng, DUAN Cheng-Hong, ZHOU Xiu-Ju. Theoretical Analysis of Current Crowding Effect in Metal/AlGaN/GaN Schottky Diodes and Its Reduction by Using Polysilicon in Anode[J]. Chin. Phys. Lett., 2007, 24(7): 048201
[11] CAO Xiao-Rong, TAN Ye-Bang, XU Gui-Ying. Aggregation Behaviour of Cationic Diblock Copolymer (MTAC)10(BA)16: MesoDyn Simulation Study[J]. Chin. Phys. Lett., 2007, 24(2): 048201
[12] Waqar AHMAD, Akhtar HUSSAIN. Water Gas Shift Reaction: A Monte Carlo Simulation[J]. Chin. Phys. Lett., 2006, 23(9): 048201
[13] Yakup Hundur, Rainer Hippler, Ziya B. Güvenc. Molecular Dynamics Study of a Thermal Expansion Coefficient: Ti Bulk with an Elastic Minimum Image Method[J]. Chin. Phys. Lett., 2006, 23(5): 048201
[14] Z. Merdan, M. Bayirli. Computation of the Fractal Pattern in Manganese Dendrites[J]. Chin. Phys. Lett., 2005, 22(8): 048201
[15] XU Chen, MA Yu-Qiang, HUI Pak-Ming, TONG Fu-Qiang. Microstructures in Strongly Interacting Dipolar Fluids[J]. Chin. Phys. Lett., 2005, 22(2): 048201
Viewed
Full text


Abstract