CROSS-DISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY |
|
|
|
|
Growth of InAlGaN Quaternary Alloys by Pulsed Metalorganic Chemical Vapor Deposition |
Ru-Dai Quan, Jin-Cheng Zhang**, Sheng-Rui Xu, Jun-Shuai Xue, Yi Zhao, Jing Ning, Zhi-Yu Lin, Ze-Yang Ren, Yue Hao |
Key Laboratory of Wide Band-Gap Semiconductor Technology, School of Microelectronics, Xidian University, Xi'an 710071
|
|
Cite this article: |
Ru-Dai Quan, Jin-Cheng Zhang, Sheng-Rui Xu et al 2016 Chin. Phys. Lett. 33 048101 |
|
|
Abstract Epitaxial growth of InAlGaN/GaN structures are performed on the $c$-plane sapphire by pulsed metal organic chemical vapor deposition with different triethylgallium (TEGa) flows in the growth process of InAlGaN quaternary alloys. X-ray photoelectron spectroscopy results show that the Al/In ratio of the samples increases as the TEGa flows increase in the InAlGaN quaternary growth process. High-resolution x-ray diffraction results show that the crystal quality is improved with increasing TEGa flows. Morphology of the InAlGaN/GaN heterostructures is characterized by an atomic force microscopy, and the growth mode of the InAlGaN quaternary shows a 2D island growth mode. The minimum surface roughness is 0.20 nm with the TEGa flows equaling to 3.6 $\mu$mol/min in rms. Hall effect measurement results show that the highest electron mobility $\mu$ is 1005.49 cm$^{2}$/Vs and the maximal two-dimensional electron gas is $1.63\times10^{13}$ cm$^{-2}$.
|
|
Received: 22 December 2015
Published: 29 April 2016
|
|
PACS: |
81.05.Bx
|
(Metals, semimetals, and alloys)
|
|
81.05.Ea
|
(III-V semiconductors)
|
|
81.15.Gh
|
(Chemical vapor deposition (including plasma-enhanced CVD, MOCVD, ALD, etc.))
|
|
81.15.Kk
|
(Vapor phase epitaxy; growth from vapor phase)
|
|
|
|
|
[1] | Steven C B, Kiki I, Jason A R, Walter K, Doewon P, Harry B D, Daniel D K, Alma E W and Richard L H 2001 IEEE Trans. Electron Devices 48 465 | [2] | Wu Y F, Ibbetson J P, Parikh P, Keller B P, Mishra U K and Kapolnek D 2001 IEEE Trans. Electron Devices 48 586 | [3] | Wu Y F, Saxler A, Moore M, Smith R P, Sheppard S, Chavarkar P M, Wisleder T, Mishra U K and Parikh P 2004 IEEE Electron Device Lett. 25 117 | [4] | Lv L, Zhang J C, Xue J S, Ma X H, Zhang W, Bi Z W, Zhang Y and Hao Y 2012 Chin. Phys. B 21 037104 | [5] | Zhao S L, Mi M H, Hou B, Luo J, Wang Y, Dai Y, Zhang J C, Ma X H and Hao Y 2014 Chin. Phys. B 23 107303 | [6] | Sun W W, Zheng X F, Fan S, Wang C, Du M, Zhang K, Chen W W, Cao Y R, Mao W, Ma X H, Zhang J C and Hao Y 2015 Chin. Phys. B 24 017303 | [7] | Wang R, Li G, Karbasian G, Guo J, Song B, Yue Y, Hu Z, Laboutin O, Cao Y, Johnson W, Snider G, Fay P, Jena D and Xing H G 2013 IEEE Electron Device Lett. 34 378 | [8] | Lecourt F, Agboton A, Ketteniss N, Behmenburg H, Defrance N, Hoel V, Kalisch H, Vescan A, Heuken M and De Jaeger J C 2013 IEEE Electron Device Lett. 34 978 | [9] | Ketteniss N, Khoshroo L R, Eickelkamp M, Heuken M, Kalisch H, Jansen R H and Vescan A 2010 Semicond. Sci. Technol. 25 075013 | [10] | Lim T, Aidam R, Waltereit P, Henkel T, Quay R, Lozar R, Maier T, Kirste L and Ambacher O 2010 IEEE Electron Device Lett. 31 671 | [11] | Chen C H, Huang L Y and Chen Y F 2002 Appl. Phys. Lett. 80 1397 | [12] | Hahn H, Reuters B, Wille A, Ketteniss N, Benkhelifa F, Ambacher O, Kalisch H and Vescan A 2010 Semicond. Sci. Technol. 25 055004 | [13] | Reuters B, Wille A, Ketteniss N, Hahn H, Holl?nde B, Heuken M, Kalisch H and Vescan A 2013 J. Electron. Mater. 42 826 | [14] | Kyono T, Hirayama H, Akita K, Nakamura T and Ishibashi K 2005 J. Appl. Phys. 98 113514 | [15] | Yu T J, Pan Y B, Yang Z J, Xu K and Zhang G Y 2007 J. Cryst. Growth 298 211 | [16] | Pan Y B, Yu T J, Yang Z J, Wang H, Qin Z X, Hua X D, Wang K, Yao S D and Zhang G Y 2007 J. Cryst. Growth 298 341 | [17] | Shang J Z, Zhang B P, Wu C M, Cai L E, Zhang J Y, Yu J Z and Wang Q M 2008 Appl. Surf. Sci. 255 3350 | [18] | Yu S F, Chang S J, Lin R M, LinY H, Lu Y C, Chang S P and Chiou Y Z 2010 J. Cryst. Growth 312 1920 | [19] | Gonschorek M, Carlin J F, Feltin E, Py M A and Grandjean N 2006 Appl. Phys. Lett. 89 062106 | [20] | Xue J S, Zhang J C, Zhang W, Li L, Meng F N, Lu M, Ning J and Hao Y 2012 J. Cryst. Growth 343 110 | [21] | Reuters B, Wille A, Ketteniss N, Hahn H, Holl?nder B, Heuken M, Kalisch H and Vescan A 2013 J. Electron. Mater. 42 826 | [22] | Ahla J P, Hertkorna J, Kocha H, Gallera B, Michela B, Bindera M and Holl?nder B 2014 J. Cryst. Growth 398 33 | [23] | Aggerstam T, Lourdudoss S, Radamson H H, Sjodin M, Lorenzini P and Look D C 2006 Thin Solid Films 515 705 |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|