CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
|
|
|
|
Broad-Band FMR Linewidth of Co2MnSi Thin Films with Low Damping Factor: The Role of Two-Magnon Scattering |
Shi-Zhu Qiao1,2**, Quan-Nian Ren1, Run-Run Hao2, Hai Zhong2, Yun Kang2, Shi-Shou Kang2, Yu-Feng Qin3**, Shu-Yun Yu2, Guang-Bing Han2, Shi-Shen Yan2, Liang-Mo Mei2 |
1Department of Science, Taiyuan Institute of Technology, Taiyuan 030008
2School of Physics, Shandong University, Jinan 250100
3Department of Applied Physics, School of Information Science and Engineering, Shandong Agricultural University, Taian 271018 |
|
Cite this article: |
Shi-Zhu Qiao, Quan-Nian Ren, Run-Run Hao et al 2016 Chin. Phys. Lett. 33 047601 |
|
|
Abstract The low Gilbert damping factor, which is usually measured by ferromagnetic resonance, is crucial in spintronic applications. Two-magnon scattering occurs when the orthogonality of the ferromagnetic resonance mode and other degenerate spin wave modes was broken by magnetic anisotropy, voids, second phase, surface defects, etc., which is important in analysis of ferromagnetic resonance linewidth. Direct fitting to linewidth with Gilbert damping is advisable only when the measured linewidth is a linear function of measuring frequency in a broad band measurement. We observe the nonlinear ferromagnetic resonance linewidth of Co2MnSi thin films with respect to measuring frequency in broad band measurement. Experimental data could be well fitted with the model including two-magnon scattering with no fixed parameters. The fitting results show that two-magnon scattering results in the nonlinear linewidth behavior, and the Gilbert damping factor is much smaller than reported ones, indicating that our Co2MnSi films are more suitable for the applications of spin transfer torque.
|
|
Received: 10 October 2015
Published: 29 April 2016
|
|
PACS: |
76.50.+g
|
(Ferromagnetic, antiferromagnetic, and ferrimagnetic resonances; spin-wave resonance)
|
|
75.70.Ak
|
(Magnetic properties of monolayers and thin films)
|
|
75.40.Gb
|
(Dynamic properties?)
|
|
|
|
|
[1] |
Jourdan M, Minar J, Braun J, Kronenberg A, Chadov S, Balke B, Gloskovskii A, Kolbe M, Elmers H J, Schonhense G, Ebert H, Felser C and Klaui M 2014 Nat. Commun. 5 3974 |
[2] |
Liu H X, Honda Y, Taira T, Matsuda K I, Arita M, Uemura T and Yamamoto M 2012 Appl. Phys. Lett. 101 132418 |
[3] |
Qiao S Z, Zhang J, Qin Y F, Hao R R, Zhong H, Zhu D P, Kang Y, Kang S S, Yu S Y, Han G B, Yan S S and Mei L M 2015 Chin. Phys. Lett. 32 057601 |
[4] |
Tang L and Yang Z J 2013 J. Appl. Phys. 114 193703 |
[5] |
Slonczewski J C 1996 J. Magn. Magn. Mater. 159 L1 |
[6] |
Yi M, Chen Z F, Chen D X, Sukegawa H, Inomata K, Lai T S and Zhou S M 2011 Chin. Phys. Lett. 28 067501 |
[7] |
Lenz K, Wende H, Kuch W, Baberschke K, Nagy K and Jánossy A 2006 Phys. Rev. B 73 144424 |
[8] |
Kalarickal S, Krivosik P, Das J, Kim K and Patton C E 2008 Phys. Rev. B 77 054427 |
[9] |
Kurebayashi H, Skinner T D, Khazen K, Olejniík K, Fang D, Ciccarelli C, Campion R P, Gallagher B L, Fleet L, Hirohata A and Ferguson A J 2013 Appl. Phys. Lett. 102 062415 |
[10] |
Krivosik P, Mo N, Kalarickal S and Patton C E 2007 J. Appl. Phys. 101 083901 |
[11] |
McMichael R D and Krivosik P 2004 IEEE Trans. Magn. 40 2 |
[12] |
Arias R and Mills D L 1999 Phys. Rev. B 60 7395 |
[13] |
Lu L, Wang Z, Mead G, Kaiser C, Leng Q and Wu M 2014 Appl. Phys. Lett. 105 012405 |
[14] |
Yang F J and Chen X Q 2013 Appl. Phys. Lett. 102 252407 |
[15] |
Ortiz G, Garcia A, Youssef J B, Biziere N, Boust F, Bobo J F, Snoeck E and Vukadinovic N 2013 IEEE Trans. Magn. 49 1037 |
[16] |
Mills D L and Arias R 2006 Physica B 384 147 |
[17] |
Lindner J, Lenz K, Kosubek E, Baberschke K, Spoddig D, Meckenstock R, Pelzl J, Frait Z and Mills D 2003 Phys. Rev. B 68 060102 |
[18] |
Zakeri K, Lindner J, Barsukov I, Meckenstock R, Farle M, von Hörsten U, Wende H, Keune W, Rocker J, Kalarickal S, Lenz K, Kuch W, Baberschke K and Frait Z 2007 Phys. Rev. B 76 104416 |
[19] |
Lu L, Young J, Wu M Z, Mathieu C, Hadley M, Krivosik P and Mo N 2012 Appl. Phys. Lett. 100 022403 |
[20] |
Pandey H, Joshi P C, Pant R P, Prasad R, Auluck S and Budhani R C 2012 J. Appl. Phys. 111 023912 |
[21] |
Belmeguenai M, Zighem F, Faurie D, Tuzcuoglu H, Chérif S M, Moch P, Westerholt K and Seiler W 2012 Phys. Status Solidi A 209 1328 |
[22] |
Yilgin R, Sakuraba Y, Oogane M, Mizukami S, Ando Y and Miyazaki T 2007 Jpn. J. Appl. Phys. 46 L205 |
[23] |
Mo N, Hohlfeld J, ul Islam M, Brown C S, Girt E, Krivosik P, Tong W, Rebei A and Patton C E 2008 Appl. Phys. Lett. 92 022506 |
[24] |
Harte K J 1965 J. Appl. Phys. 36 960 |
[25] |
Sparks M 1964 Ferromagnetic-Relaxation Theory (New York: McGraw-Hill) p 17 |
[26] |
Kamberský V 1976 Czech. J. Phys. B 26 1366 |
[27] |
Trudel S, Gaier O, Hamrle J and Hillebrands B 2010 J. Phys. D: Appl. Phys. 43 193001 |
[28] |
Kamberský V 1970 Can. J. Phys. 48 2906 |
[29] |
Mizukami S, Watanabe D, Oogane M, Ando Y, Miura Y, Shirai M and Miyazaki T 2009 J. Appl. Phys. 105 07D306 |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|