CONDENSED MATTER: STRUCTURE, MECHANICAL AND THERMAL PROPERTIES |
|
|
|
|
Thermal Expansion of Ni$_{3}$Al Intermetallic Compound: Experiment and Simulation |
Hai-Peng Wang, Peng Lü, Kai Zhou, Bing-Bo Wei** |
MOE Key Laboratory of Space Applied Physics and Chemistry, Department of Applied Physics, Northwestern Polytechnical University, Xi'an 710072
|
|
Cite this article: |
Hai-Peng Wang, Peng Lü, Kai Zhou et al 2016 Chin. Phys. Lett. 33 046502 |
|
|
Abstract The thermal expansion of Ni$_{3}$Al intermetallic compound is determined by a thermal dilatometer and simulated by the molecular dynamics method. The results of the linear thermal expansion coefficients are presented from 200 K up to the maximum temperature of 1600 K. The single phase of Ni$_{3}$Al intermetallic compound is confirmed by x-ray diffraction together with DSC melting and solidification peaks, from which the solidus and the liquidus temperatures are obtained to be 1660 and 1695 K, respectively. The measured linear thermal expansion coefficient increases from $1.5\times10^{-5}$ to $2.7\times10^{-5}$ K$^{-1}$ in the experimental temperature range, in good agreement with the data obtained by the molecular dynamics simulation, just a slight difference from the temperature dependence coefficient. Furthermore, the atomic structure and position are presented to reveal the atom distribution change during thermal expansion of Ni$_{3}$Al compound.
|
|
Received: 31 December 2015
Published: 29 April 2016
|
|
PACS: |
65.40.De
|
(Thermal expansion; thermomechanical effects)
|
|
31.15.-p
|
(Calculations and mathematical techniques in atomic and molecular physics)
|
|
|
|
|
[1] | Gangopadhyay A K, Blodgett M E, Johnson M L, Vogt A J, Mauro N A and Kelton K F 2014 Appl. Phys. Lett. 104 191907 | [2] | Yuan B H, Yuan H L, Song W B, Liu X S, Cheng Y G, Chao M J and Liang E J 2014 Chin. Phys. Lett. 31 076501 | [3] | Bridges F, Keiber T, Juhas P, Billinge S J L, Sutton L, Wilde J and Kowach G R 2014 Phys. Rev. Lett. 112 045505 | [4] | Duan Y H, Huang B, Sun Y, Peng M J and Zhou S G 2014 Chin. Phys. Lett. 31 088101 | [5] | Fecht H J 1990 Phys. Rev. Lett. 65 610 | [6] | Laplanche G, Gadaud P, Horst O, Otto F, Eggeler G and George E P 2015 J. Alloys Compd. 623 348 | [7] | Raj S V 2015 J. Mater. Eng. Perform. 24 1199 | [8] | Thomas S H, Thomas L C and Marcel A J 2010 Scr. Mater. 63 761 | [9] | Wang H P, Chang J and Wei B 2010 Phys. Lett. A 374 2489 | [10] | Seyidov M Y and Suleymanov R A 2010 J. Appl. Phys. 108 063540 | [11] | Wang H P and Wei B 2008 Appl. Phys. Lett. 93 171904 | [12] | Yamada I, Marukawa S, Hayashi N, Matsushita M and Irifune T 2015 Appl. Phys. Lett. 106 151901 | [13] | Tan K H, Johan M R, Ahmad R, Kadri N A, Zain N M and Arof A K 2012 Int. J. Electrochem. Sci. 7 3765 | [14] | Dong H X, Jiang Y, He Y H, Song M, Zou J, Xu N P, Huang B Y, Liu C T and Liaw P K 2009 J. Alloys Compd. 484 907 | [15] | Zhang X Q, Li H, Liew K M, Li Y F and Sun F W 2007 Chin. Phys. Lett. 24 1701 | [16] | Scheppe F, Sahm P R, Hermann W, Paul U and Preuhs J 2002 Mater. Sci. Eng. A 329-331 596 | [17] | Morsi K 2001 Mater. Sci. Eng. A 299 1 | [18] | Kim D, Shang S L and Liu Z K 2012 Acta Mater. 60 1846 | [19] | Shang S L, Wang Y, Kim D and Liu Z K 2010 Comput. Mater. Sci. 47 1040 | [20] | Gialanella S and Marino F 2010 J. Mater. Sci. 45 824 | [21] | Wang Y, Liu Z K and Chen L Q 2004 Acta Mater. 52 2665 | [22] | Wang C L, Xu J Q, Hu X H, Chen D, Sun H B and Yu B H 2011 Int. J. Mod. Phys. B 25 3623 | [23] | Kortekaas T F M, Franse J J M and H?lscher H 1974 Phys. Lett. A 48 305 | [24] | Rao P V M, Murthy K S, Suryanarayana S V and Naidu S V N 1993 J. Alloys Compd. 190 L33 | [25] | Ramesh R, Pathiraj B, Kolster B H and Maas J H 1992 Mater. Sci. Eng. A 152 60 | [26] | Williams R K, Graves R S, Weaver F J and McElroy D L 1985 Materials Research Society Symposium Proceedings 39 High-Temperature (Ordered Intermetallie Alloys) p 505 | [27] | Angelo J E, Moody N R and Baskes M I 1995 Modell. Simul. Mater. Sci. & Eng. 3 289 |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|