Chin. Phys. Lett.  2016, Vol. 33 Issue (04): 046502    DOI: 10.1088/0256-307X/33/4/046502
CONDENSED MATTER: STRUCTURE, MECHANICAL AND THERMAL PROPERTIES |
Thermal Expansion of Ni$_{3}$Al Intermetallic Compound: Experiment and Simulation
Hai-Peng Wang, Peng Lü, Kai Zhou, Bing-Bo Wei**
MOE Key Laboratory of Space Applied Physics and Chemistry, Department of Applied Physics, Northwestern Polytechnical University, Xi'an 710072
Cite this article:   
Hai-Peng Wang, Peng Lü, Kai Zhou et al  2016 Chin. Phys. Lett. 33 046502
Download: PDF(795KB)   PDF(mobile)(KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract The thermal expansion of Ni$_{3}$Al intermetallic compound is determined by a thermal dilatometer and simulated by the molecular dynamics method. The results of the linear thermal expansion coefficients are presented from 200 K up to the maximum temperature of 1600 K. The single phase of Ni$_{3}$Al intermetallic compound is confirmed by x-ray diffraction together with DSC melting and solidification peaks, from which the solidus and the liquidus temperatures are obtained to be 1660 and 1695 K, respectively. The measured linear thermal expansion coefficient increases from $1.5\times10^{-5}$ to $2.7\times10^{-5}$ K$^{-1}$ in the experimental temperature range, in good agreement with the data obtained by the molecular dynamics simulation, just a slight difference from the temperature dependence coefficient. Furthermore, the atomic structure and position are presented to reveal the atom distribution change during thermal expansion of Ni$_{3}$Al compound.
Received: 31 December 2015      Published: 29 April 2016
PACS:  65.40.De (Thermal expansion; thermomechanical effects)  
  31.15.-p (Calculations and mathematical techniques in atomic and molecular physics)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/33/4/046502       OR      https://cpl.iphy.ac.cn/Y2016/V33/I04/046502
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Hai-Peng Wang
Peng Lü
Kai Zhou
Bing-Bo Wei
[1]Gangopadhyay A K, Blodgett M E, Johnson M L, Vogt A J, Mauro N A and Kelton K F 2014 Appl. Phys. Lett. 104 191907
[2]Yuan B H, Yuan H L, Song W B, Liu X S, Cheng Y G, Chao M J and Liang E J 2014 Chin. Phys. Lett. 31 076501
[3]Bridges F, Keiber T, Juhas P, Billinge S J L, Sutton L, Wilde J and Kowach G R 2014 Phys. Rev. Lett. 112 045505
[4]Duan Y H, Huang B, Sun Y, Peng M J and Zhou S G 2014 Chin. Phys. Lett. 31 088101
[5]Fecht H J 1990 Phys. Rev. Lett. 65 610
[6]Laplanche G, Gadaud P, Horst O, Otto F, Eggeler G and George E P 2015 J. Alloys Compd. 623 348
[7]Raj S V 2015 J. Mater. Eng. Perform. 24 1199
[8]Thomas S H, Thomas L C and Marcel A J 2010 Scr. Mater. 63 761
[9]Wang H P, Chang J and Wei B 2010 Phys. Lett. A 374 2489
[10]Seyidov M Y and Suleymanov R A 2010 J. Appl. Phys. 108 063540
[11]Wang H P and Wei B 2008 Appl. Phys. Lett. 93 171904
[12]Yamada I, Marukawa S, Hayashi N, Matsushita M and Irifune T 2015 Appl. Phys. Lett. 106 151901
[13]Tan K H, Johan M R, Ahmad R, Kadri N A, Zain N M and Arof A K 2012 Int. J. Electrochem. Sci. 7 3765
[14]Dong H X, Jiang Y, He Y H, Song M, Zou J, Xu N P, Huang B Y, Liu C T and Liaw P K 2009 J. Alloys Compd. 484 907
[15]Zhang X Q, Li H, Liew K M, Li Y F and Sun F W 2007 Chin. Phys. Lett. 24 1701
[16]Scheppe F, Sahm P R, Hermann W, Paul U and Preuhs J 2002 Mater. Sci. Eng. A 329-331 596
[17]Morsi K 2001 Mater. Sci. Eng. A 299 1
[18]Kim D, Shang S L and Liu Z K 2012 Acta Mater. 60 1846
[19]Shang S L, Wang Y, Kim D and Liu Z K 2010 Comput. Mater. Sci. 47 1040
[20]Gialanella S and Marino F 2010 J. Mater. Sci. 45 824
[21]Wang Y, Liu Z K and Chen L Q 2004 Acta Mater. 52 2665
[22]Wang C L, Xu J Q, Hu X H, Chen D, Sun H B and Yu B H 2011 Int. J. Mod. Phys. B 25 3623
[23]Kortekaas T F M, Franse J J M and H?lscher H 1974 Phys. Lett. A 48 305
[24]Rao P V M, Murthy K S, Suryanarayana S V and Naidu S V N 1993 J. Alloys Compd. 190 L33
[25]Ramesh R, Pathiraj B, Kolster B H and Maas J H 1992 Mater. Sci. Eng. A 152 60
[26]Williams R K, Graves R S, Weaver F J and McElroy D L 1985 Materials Research Society Symposium Proceedings 39 High-Temperature (Ordered Intermetallie Alloys) p 505
[27]Angelo J E, Moody N R and Baskes M I 1995 Modell. Simul. Mater. Sci. & Eng. 3 289
Related articles from Frontiers Journals
[1] Meibo Tang, Xiuhong Pan , Minghui Zhang , and Haiqin Wen . Scaling Behavior between Heat Capacity and Thermal Expansion in Solids[J]. Chin. Phys. Lett., 2021, 38(2): 046502
[2] Meng Li, Yuan Li, Chun-Yan Wang, Qiang Sun. Negative Thermal Expansion of GaFe(CN)$_{6}$ and Effect of Na Insertion by First-Principles Calculations[J]. Chin. Phys. Lett., 2019, 36(6): 046502
[3] Qing Wang, Hai-Peng Wang, De-Lu Geng, Ming-Xing Li, Bing-Bo Wei. A Calorimetric Study Assisted with First Principle Calculations of Specific Heat for Si-Ge Alloys within a Broad Temperature Range[J]. Chin. Phys. Lett., 2018, 35(12): 046502
[4] Yun-Kai Zhou, Xing Zhang, Shu-Guang Liu, Ming-Zhen Ma, Ri-Ping Liu. High Performance ZrNbAl Alloy with Low Thermal Expansion Coefficient[J]. Chin. Phys. Lett., 2018, 35(8): 046502
[5] Wei-Li Wang, Li-Jun Meng, Liu-Hui Li, Liang Hu, Kai Zhou, Zhang-Huan Kong, Bing-Bo Wei. An Experimental Study of Thermophysical Properties for Quinary High-Entropy NiFeCoCrCu/Al Alloys[J]. Chin. Phys. Lett., 2016, 33(11): 046502
[6] Zheng-Fu Cheng, Rui-Lun Zheng. Thermal Expansion and Deformation of Graphene[J]. Chin. Phys. Lett., 2016, 33(04): 046502
[7] Xiang-Hong Ge, Yan-Chao Mao, Lin Li, Li-Ping Li, Na Yuan, Yong-Guang Cheng, Juan Guo, Ming-Ju Chao, Er-Jun Liang. Phase Transition and Negative Thermal Expansion Property of ZrMnMo$_{3}$O$_{12}$[J]. Chin. Phys. Lett., 2016, 33(04): 046502
[8] ZHENG Fa-Song, DING Ying-Chun, TAN Yi-Dong, LIN Jing, ZHANG Shu-Lian. The Approach of Compensation of Air Refractive Index in Thermal Expansion Coefficients Measurement Based on Laser Feedback Interferometry[J]. Chin. Phys. Lett., 2015, 32(07): 046502
[9] CHU Li-Hua, WANG Cong, SUN Ying, LI Mei-Cheng, WAN Zi-Pei, WANG Yu, DOU Shang-Yi, CHU Yue. Doping Effect of Co at Ag Sites in Antiperovskite Mn3AgN Compounds[J]. Chin. Phys. Lett., 2015, 32(4): 046502
[10] YUAN Bao-He, YUAN Huan-Li, SONG Wen-Bo, LIU Xian-Sheng, CHENG Yong-Guang, CHAO Ming-Ju, LIANG Er-Jun. High Solubility of Hetero-Valence Ion (Cu2+) for Reducing Phase Transition and Thermal Expansion of ZrV1.6P0.4O7[J]. Chin. Phys. Lett., 2014, 31(07): 046502
[11] ZHANG Xu-Dong, CUI Shou-Xin, SHI Hai-Feng. Theoretical Study of Thermodynamics Properties and Bulk Modulus of SiC under High Pressure and Temperature[J]. Chin. Phys. Lett., 2014, 31(1): 046502
[12] SONG Wen-Bo, LIANG Er-Jun, LIU Xian-Sheng, LI Zhi-Yuan, YUAN Bao-He, WANG Jun-Qiao. A Negative Thermal Expansion Material of ZrMgMo3O12[J]. Chin. Phys. Lett., 2013, 30(12): 046502
[13] LIU Dong-Huan, SHANG Xin-Chun. The Physical-Mechanism Based High-Temperature Thermal Contact Conductance Model with Experimental Verification[J]. Chin. Phys. Lett., 2013, 30(3): 046502
[14] SONG Hua-Jie, HUANG Feng-Lei** . Accurately Predicting the Density and Hydrostatic Compression of Hexahydro-1,3,5-Trinitro-1,3,5-Triazine from First Principles[J]. Chin. Phys. Lett., 2011, 28(9): 046502
[15] LIU Xi**, LIU Wei, HE Qiang, DENG Li-Wei, WANG He-Jin, HE Duan-Wei, LI Bao-Sheng . Isotropic Thermal Expansivity and Anisotropic Compressibility of ReB2[J]. Chin. Phys. Lett., 2011, 28(3): 046502
Viewed
Full text


Abstract