Chin. Phys. Lett.  2016, Vol. 33 Issue (04): 046501    DOI: 10.1088/0256-307X/33/4/046501
CONDENSED MATTER: STRUCTURE, MECHANICAL AND THERMAL PROPERTIES |
Thermal Expansion and Deformation of Graphene
Zheng-Fu Cheng, Rui-Lun Zheng**
College of Electronic and Electrical Engineering, Chongqing University of Arts and Sciences, Yongchuan 402160
Cite this article:   
Zheng-Fu Cheng, Rui-Lun Zheng 2016 Chin. Phys. Lett. 33 046501
Download: PDF(482KB)   PDF(mobile)(KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Taking into consideration short-atomic-range interactions and anharmonic effects, we calculate the thermal expansion coefficients, Gruneisen parameters, the elastic modulus of graphene varying with temperature and the phonon frequency. The anharmonic effects associated with the graphene deformation are also discussed. The results show that the value of thermal expansion coefficient is negative in the moderate temperature range, and it becomes positive when the temperature grows to be higher than a certain value. The change rate of elastic modulus with respect to temperature and pressure are calculated, and phonon frequencies are estimated. In the process of graphene thermal expansion, it is accompanied with the change of bond length and the rotation around the axis normal to the plane. Our results indicate that the effects due to the bond change are more significant than that of the rotation. We also show that if anharmonic effects are ignored, the thermal expansion coefficient and the Gruneisen parameters are zero, and the elastic modulus and the phonon frequency are constant. If anharmonic effects are considered up to the second term, these values will vary with temperature, and become closer to the experimental value. The higher the temperature is, the more significant the anharmonic effects become.
Received: 23 December 2015      Published: 29 April 2016
PACS:  65.40.De (Thermal expansion; thermomechanical effects)  
  63.22.Rc (Phonons in graphene)  
  65.80.Ck (Thermal properties of graphene)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/33/4/046501       OR      https://cpl.iphy.ac.cn/Y2016/V33/I04/046501
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Zheng-Fu Cheng
Rui-Lun Zheng
[1]Wang L et al 2014 Acta Phys. Sin. 63 176801 (in Chinese)
[2]Wang J D et al 2015 Acta Phys.-Chim. Sin. 31 90 (in Chinese)
[3]Wang L L et al 2014 Acta Phys.-Chim. Sin. 30 1659 (in Chinese)
[4]Li F et al 2014 Acta Phys. Sin. 63 176802 (in Chinese)
[5]Tian W et al 2015 Acta Phys. Sin. 64 046102 (in Chinese)
[6]Gong J et al 2015 Acta Phys. Sin. 64 067301 (in Chinese)
[7]Chang X 2014 Acta Phys. Sin. 63 086102 (in Chinese)
[8]Mi C G et al 2014 Acta Phys.-Chim. Sin. 30 1230 (in Chinese)
[9]Yu S and Subinova G Y 2011 Phys. Status Solidi 53 608 (in Russian)
[10]Yu S and Subinova G Y 2015 Phys. Status Solidi 57 1017 (in Russian)
[11]Liu L et al 2011 Chin. Phys. B 20 106201
[12]Li Q et al 2014 Chin. Phys. B 23 017101
[13]Mounet N and Marzari N 2005 Phys. Rev. B 71 205214
[14]Zakharchenko K V et al 2009 Phys. Rev. Lett. 102 046808
[15]Bao W et al 2009 Nat. Nanotechnol. 4 562
[16]Jiang J W et al 2009 Phys. Rev. B 80 205429
[17]Pozzo M et al 2011 Phys. Rev. Lett. 106 135501
[18]Yu S 2011 Tech. Phys. Lett. 37 42 (in Russian)
[19]Shao T et al 2012 J. Chem. Phys. 137 194901
[20]Yu S 2012 Phys. Solid State 54 875
[21]Zheng R L and Hu X Q 1994 College Phys. 13 15 (in Chinese)
[22]Zheng R L and Hu X Q 1996 Solid Theory and Application (Chongqing: Southwest Normal University Press) p 267–271 (in Chinese)
[23]Harrison W A 1983 Phys. Rev. B 27 3592
[24]Yu S 2009 Phys. Status Solidi 51 2041 (in Russian)
[25]Abdullaev N A 2001 Phys. Status Solidi 43 697 (in Russian)
[26]Li B H 2002 J. Chongqing University (Natural Sci. Ed.) 25 71 (in Chinese)
[27]Solin S A and Ramdas A K 1970 Phys. Rev. B 1 1687
Related articles from Frontiers Journals
[1] Meibo Tang, Xiuhong Pan , Minghui Zhang , and Haiqin Wen . Scaling Behavior between Heat Capacity and Thermal Expansion in Solids[J]. Chin. Phys. Lett., 2021, 38(2): 046501
[2] Meng Li, Yuan Li, Chun-Yan Wang, Qiang Sun. Negative Thermal Expansion of GaFe(CN)$_{6}$ and Effect of Na Insertion by First-Principles Calculations[J]. Chin. Phys. Lett., 2019, 36(6): 046501
[3] Qing Wang, Hai-Peng Wang, De-Lu Geng, Ming-Xing Li, Bing-Bo Wei. A Calorimetric Study Assisted with First Principle Calculations of Specific Heat for Si-Ge Alloys within a Broad Temperature Range[J]. Chin. Phys. Lett., 2018, 35(12): 046501
[4] Yun-Kai Zhou, Xing Zhang, Shu-Guang Liu, Ming-Zhen Ma, Ri-Ping Liu. High Performance ZrNbAl Alloy with Low Thermal Expansion Coefficient[J]. Chin. Phys. Lett., 2018, 35(8): 046501
[5] Wei-Li Wang, Li-Jun Meng, Liu-Hui Li, Liang Hu, Kai Zhou, Zhang-Huan Kong, Bing-Bo Wei. An Experimental Study of Thermophysical Properties for Quinary High-Entropy NiFeCoCrCu/Al Alloys[J]. Chin. Phys. Lett., 2016, 33(11): 046501
[6] Hai-Peng Wang, Peng Lü, Kai Zhou, Bing-Bo Wei. Thermal Expansion of Ni$_{3}$Al Intermetallic Compound: Experiment and Simulation[J]. Chin. Phys. Lett., 2016, 33(04): 046501
[7] Xiang-Hong Ge, Yan-Chao Mao, Lin Li, Li-Ping Li, Na Yuan, Yong-Guang Cheng, Juan Guo, Ming-Ju Chao, Er-Jun Liang. Phase Transition and Negative Thermal Expansion Property of ZrMnMo$_{3}$O$_{12}$[J]. Chin. Phys. Lett., 2016, 33(04): 046501
[8] ZHENG Fa-Song, DING Ying-Chun, TAN Yi-Dong, LIN Jing, ZHANG Shu-Lian. The Approach of Compensation of Air Refractive Index in Thermal Expansion Coefficients Measurement Based on Laser Feedback Interferometry[J]. Chin. Phys. Lett., 2015, 32(07): 046501
[9] CHU Li-Hua, WANG Cong, SUN Ying, LI Mei-Cheng, WAN Zi-Pei, WANG Yu, DOU Shang-Yi, CHU Yue. Doping Effect of Co at Ag Sites in Antiperovskite Mn3AgN Compounds[J]. Chin. Phys. Lett., 2015, 32(4): 046501
[10] YUAN Bao-He, YUAN Huan-Li, SONG Wen-Bo, LIU Xian-Sheng, CHENG Yong-Guang, CHAO Ming-Ju, LIANG Er-Jun. High Solubility of Hetero-Valence Ion (Cu2+) for Reducing Phase Transition and Thermal Expansion of ZrV1.6P0.4O7[J]. Chin. Phys. Lett., 2014, 31(07): 046501
[11] ZHANG Xu-Dong, CUI Shou-Xin, SHI Hai-Feng. Theoretical Study of Thermodynamics Properties and Bulk Modulus of SiC under High Pressure and Temperature[J]. Chin. Phys. Lett., 2014, 31(1): 046501
[12] SONG Wen-Bo, LIANG Er-Jun, LIU Xian-Sheng, LI Zhi-Yuan, YUAN Bao-He, WANG Jun-Qiao. A Negative Thermal Expansion Material of ZrMgMo3O12[J]. Chin. Phys. Lett., 2013, 30(12): 046501
[13] LIU Dong-Huan, SHANG Xin-Chun. The Physical-Mechanism Based High-Temperature Thermal Contact Conductance Model with Experimental Verification[J]. Chin. Phys. Lett., 2013, 30(3): 046501
[14] SONG Hua-Jie, HUANG Feng-Lei** . Accurately Predicting the Density and Hydrostatic Compression of Hexahydro-1,3,5-Trinitro-1,3,5-Triazine from First Principles[J]. Chin. Phys. Lett., 2011, 28(9): 046501
[15] LIU Xi**, LIU Wei, HE Qiang, DENG Li-Wei, WANG He-Jin, HE Duan-Wei, LI Bao-Sheng . Isotropic Thermal Expansivity and Anisotropic Compressibility of ReB2[J]. Chin. Phys. Lett., 2011, 28(3): 046501
Viewed
Full text


Abstract