Chin. Phys. Lett.  2016, Vol. 33 Issue (04): 045202    DOI: 10.1088/0256-307X/33/4/045202
PHYSICS OF GASES, PLASMAS, AND ELECTRIC DISCHARGES |
Formation Process of Magnetized Fusion Target on the YingGuang 1 Device
Lu-Lu Li1, Yue-Song Jia2, Qi-Zhi Sun2, Wei Liu2, Zheng-Fen Liu2, Wei-Dong Qin2, Jun Li2, Yuan Chi2, Xian-Jun Yang1**
1Institute of Applied Physics and Computational Mathematics, Beijing 100094
2Institute of Fluid Physics, China Academy Of Engineering Physics, Mianyang 621900
Cite this article:   
Lu-Lu Li, Yue-Song Jia, Qi-Zhi Sun et al  2016 Chin. Phys. Lett. 33 045202
Download: PDF(1000KB)   PDF(mobile)(KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Magnetized target fusion is an alternative method to fulfill the goal of controlled fusion, which combines advantages of both magnetic confinement fusion and inertial confinement fusion since its parameter space lies between the two traditional ways. Field reversed configuration (FRC) is a good candidate of magnetized targets due to its translatable, compressible, high $\beta$ and high energy density properties. Dynamic formation process of high density FRC is observed on the YingGuang 1 device for the first time in China. The evolution of a magnetic field is detected with magnetic probes, and the compression process can be clearly seen from images taken with a high-speed multi-frame CCD camera. The process is also studied with two-dimensional magneto hydrodynamic code MPF-2D theoretically, and the results agree well with the experiment. Combining the experimental data and the theoretical analysis, the length of the formed FRC is about 39 cm, the diameter is about 2–2.7 cm, the average density is $1.3 \times 10^{16}$ cm$^{-3}$, and the average temperature is 137 eV.
Received: 20 November 2015      Published: 29 April 2016
PACS:  52.55.Lf (Field-reversed configurations, rotamaks, astrons, ion rings,magnetized target fusion, and cusps)  
  52.25.Xz (Magnetized plasmas)  
  52.30.Cv (Magnetohydrodynamics (including electron magnetohydrodynamics))  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/33/4/045202       OR      https://cpl.iphy.ac.cn/Y2016/V33/I04/045202
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Lu-Lu Li
Yue-Song Jia
Qi-Zhi Sun
Wei Liu
Zheng-Fen Liu
Wei-Dong Qin
Jun Li
Yuan Chi
Xian-Jun Yang
[1]Hurricane O A et al 2014 Nature 506 343
[2]Kishimoto H et al 2005 Nucl. Fusion 45 986
[3]Grabowski C et al 2014 IEEE Trans. Plasma Sci. 42 1179
[4]Slutz S A et al 2010 Phys. Plasmas 17 056303
[5]Tollefson J 2014 Nat. News 17 Oct
[6]Tuszewski M et al 2012 Phys. Rev. Lett. 108 255008
[7]Zaripov M M, Khaybullin I B and Shtyrkov E I 1976 Sov. Phys. Usp. 19 1032
[8]Lindemuth I R and Kirkpatrick R C 1983 Nucl. Fusion 23 263
[9]Lindemuth I R et al 1995 Phys. Rev. Lett. 75 1953
[10]Intrator T P et al 2004 IEEE Trans. Plasma Sci. 33 152
[11]Tuszewski M 1988 Nucl. Fusion 28 2033
[12]Steinhauer L C 2011 Phys. Plasmas 18 070501
[13]Taccetti J M et al 2003 Rev. Sci. Instrum. 74 4314
[14]Wurden G A et al 2008 Report on 22nd IAEA Fusion Energy Conference
[15]Guo H Y et al 2011 Phys. Plasmas 18 056110
[16]Waldrop M M 2014 Nature 511 398
[17]Sun Q Z et al 2013 Acta Phys. Sin. 62 78407 (in Chinese)
[18]Li L L, Zhang H and Yang X J 2014 Acta Phys. Sin. 63 165202 (in Chinese)
[19]Li L L, Zhang H and Yang X J 2015 High Power Laser Part. Beams 27 045006 (in Chinese)
[20]Li L L, Zhang H and Yang X J 2015 Acta Phys. Sin. 64 125202 (in Chinese)
Related articles from Frontiers Journals
[1] Wei Chen and Zheng-Xiong Wang. Energetic Particles in Magnetic Confinement Fusion Plasmas[J]. Chin. Phys. Lett., 2020, 37(12): 045202
[2] CHEN Shuai, ZHOU Xiao-Ji, YANG Fan, XIA Lin, WANG Yi-Qiu, CHEN Xu-Zong,. Optimization of the Loading Process of the QUIC Magnetic Trap for the Experiment of Bose--Einstein Condensation[J]. Chin. Phys. Lett., 2004, 21(11): 045202
Viewed
Full text


Abstract