Chin. Phys. Lett.  2016, Vol. 33 Issue (04): 044401    DOI: 10.1088/0256-307X/33/4/044401
FUNDAMENTAL AREAS OF PHENOMENOLOGY(INCLUDING APPLICATIONS) |
Examination of the Thermal Cloaking Effectiveness with Layered Engineering Materials
Run Hu, Jin-Yan Hu, Rui-Kang Wu, Bin Xie, Xing-Jian Yu, Xiao-Bing Luo**
State Key Laboratory of Coal Combustion and Thermal Packaging Laboratory, School of Energy and Power Engineering, Huazhong University of Science and Technology, Wuhan 430074
Cite this article:   
Run Hu, Jin-Yan Hu, Rui-Kang Wu et al  2016 Chin. Phys. Lett. 33 044401
Download: PDF(1094KB)   PDF(mobile)(KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract The concentrically layered thermal cloaks with isotropic materials could realize the equivalent thermal cloaking effect with Pendry's cloak, while the effectiveness is scarcely investigated quantitatively. Here we examine the cloaking effectiveness quantitatively by evaluating the standard deviation of the temperature difference between the simulated plane with the layered thermal cloak and Pendry's thermal cloak. The design rules for the isotropic materials in terms of thermal conductivity and layer thickness are presented. The present method could quantitatively evaluate the cloaking effectiveness, and could open avenues for analyzing the cloaking effect, detecting the (anti-) cloaks, etc.
Received: 27 November 2015      Published: 29 April 2016
PACS:  44.10.+i (Heat conduction)  
  05.70.-a (Thermodynamics)  
  81.05.Xj (Metamaterials for chiral, bianisotropic and other complex media)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/33/4/044401       OR      https://cpl.iphy.ac.cn/Y2016/V33/I04/044401
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Run Hu
Jin-Yan Hu
Rui-Kang Wu
Bin Xie
Xing-Jian Yu
Xiao-Bing Luo
[1]Pendry J B, Schurig D and Smith D R 2006 Science 312 1780
[2]Hu R, Wei X, Hu J Y and Luo X B 2014 Sci. Rep. 4 3600
[3]Hu R, Xie B, Hu J Y, Chen Q and Luo X B 2015 Europhys. Lett. 111 54003
[4]Li T H, Chun M F, Huang M, Yang J J and Chen J C 2014 Acta Phys. Sin. 63 054401 (in Chinese)
[5]Huang J, Yu Z F and Sun L K 2015 Acta Phys. Sin. 64 084401 (in Chinese)
[6]Guenneau S, Amra C and Veynante D 2012 Opt. Express 20 8207
[7]Fan C, Gao Y and Huang J 2008 Appl. Phys. Lett. 92 251907
[8]Zhang Y, Xu H and Zhang B 2015 AIP Adv. 5 053402
[9]Chen T, Weng C and Chen J 2008 Appl. Phys. Lett. 93 114103
[10]Narayana S and Sato Y 2012 Phys. Rev. Lett. 108 214303
[11]Han T, Bai X, Thong J, Li B and Qiu C W 2014 Adv. Mater. 26 1731
[12]Han T, Yuan T, Li B and Qiu C W 2013 Sci. Rep. 3 1593
[13]Chen T, Weng C and Tsai Y 2015 J. Appl. Phys. 117 054904
[14]Schittny R, Kadic M, Guenneau S and Wegener M 2013 Phys. Rev. Lett. 110 195901
[15]Chen F and Lei D 2015 Sci. Rep. 5 11552
[16]Petiteau D, Guenneau S, Ballieud M, Zerrad M and Amra C 2014 Sci. Rep. 4 7386
Related articles from Frontiers Journals
[1] Lan Dong, Bohai Liu, Yuanyuan Wang, and Xiangfan Xu. Tunable Thermal Conductivity of Ferroelectric P(VDF-TrFE) Nanofibers via Molecular Bond Modulation[J]. Chin. Phys. Lett., 2022, 39(12): 044401
[2] Pei-Chao Cao, Yu-Gui Peng, Ying Li, and Xue-Feng Zhu. Phase-Locking Diffusive Skin Effect[J]. Chin. Phys. Lett., 2022, 39(5): 044401
[3] Yue Wang, Xiaoxiang Yu, Xiao Wan, Nuo Yang, and Chengcheng Deng. Anomalous Impact of Surface Wettability on Leidenfrost Effect at Nanoscale[J]. Chin. Phys. Lett., 2021, 38(9): 044401
[4] Qing Xi, Jinxin Zhong, Jixiong He, Xiangfan Xu, Tsuneyoshi Nakayama, Yuanyuan Wang, Jun Liu, Jun Zhou, and Baowen Li. Erratum: A Ubiquitous Thermal Conductivity Formula for Liquids, Polymer Glass, and Amorphous Solids [Chin. Phys. Lett. 37 (2020) 104401][J]. Chin. Phys. Lett., 2021, 38(3): 044401
[5] Ying Li and Jiaxin Li. Advection and Thermal Diode[J]. Chin. Phys. Lett., 2021, 38(3): 044401
[6] Yong Gao. Ellipsoidal Thermal Concentrator and Cloak with Transformation Media[J]. Chin. Phys. Lett., 2021, 38(2): 044401
[7] Gui-ping Zhu , Chang-wei Zhao , Xi-wen Wang , and Jian Wang. Tuning Thermal Conductivity in Si Nanowires with Patterned Structures[J]. Chin. Phys. Lett., 2021, 38(2): 044401
[8] Liu-Jun Xu and Ji-Ping Huang. Active Thermal Wave Cloak[J]. Chin. Phys. Lett., 2020, 37(12): 044401
[9] Quan-Wen Hou, Jia-Chi Li , and Xiao-Peng Zhao . Isotropic Thermal Cloaks with Thermal Manipulation Function[J]. Chin. Phys. Lett., 2021, 38(1): 044401
[10] Yu Yang , XiuLing Li, and Lifa Zhang . Bidirectional and Unidirectional Negative Differential Thermal Resistance Effect in a Modified Lorentz Gas Model[J]. Chin. Phys. Lett., 2021, 38(1): 044401
[11] Qing Xi, Jinxin Zhong, Jixiong He, Xiangfan Xu, Tsuneyoshi Nakayama, Yuanyuan Wang, Jun Liu, Jun Zhou, and Baowen Li. A Ubiquitous Thermal Conductivity Formula for Liquids, Polymer Glass, and Amorphous Solids[J]. Chin. Phys. Lett., 2020, 37(10): 044401
[12] Liujun Xu and Jiping Huang. Negative Thermal Transport in Conduction and Advection[J]. Chin. Phys. Lett., 2020, 37(8): 044401
[13] Le-Min Zhang, Bin-Bin Jiao, Shi-Chang Yun, Yan-Mei Kong, Chih-Wei Ku, Da-Peng Chen. A CMOS Compatible MEMS Pirani Vacuum Gauge with Monocrystal Silicon Heaters and Heat Sinks[J]. Chin. Phys. Lett., 2017, 34(2): 044401
[14] Feng Chi, Lian-Liang Sun. Photon-Assisted Heat Generation by Electric Current in a Quantum Dot Attached to Ferromagnetic Leads[J]. Chin. Phys. Lett., 2016, 33(11): 044401
[15] Qiu-Xue Jin, Bo Liu, Yan Liu, Wei-Wei Wang, Heng Wang, Zhen Xu, Dan Gao, Qing Wang, Yang-Yang Xia, Zhi-Tang Song, Song-Lin Feng. Three-Dimensional Simulations of RESET Operation in Phase-Change Random Access Memory with Blade-Type Like Phase Change Layer by Finite Element Modeling[J]. Chin. Phys. Lett., 2016, 33(09): 044401
Viewed
Full text


Abstract