FUNDAMENTAL AREAS OF PHENOMENOLOGY(INCLUDING APPLICATIONS) |
|
|
|
|
Temperature-Dependent Photoluminescence Characteristics of InAs/GaAs Quantum Dots Directly Grown on Si Substrates |
Ting Wang1**, Hui-Yun Liu2, Jian-Jun Zhang1** |
1Institute of Physics, Chinese Academy of Sciences, Beijing 100190 2Department of Electronic & Electrical Engineering, University College London, Torrington Place WC1E 7JE, United Kingdom
|
|
Cite this article: |
Ting Wang, Hui-Yun Liu, Jian-Jun Zhang 2016 Chin. Phys. Lett. 33 044207 |
|
|
Abstract The first operation of an electrically pumped 1.3-μm InAs/GaAs quantum-dot laser was previously reported epitaxially grown on Si (100) substrate. Here the direct epitaxial growth condition of 1.3-μm InAs/GaAs quantum on a Si substrate is further investigated using atomic force microscopy, etch pit density and temperature-dependent photoluminescence (PL) measurements. The PL for Si-based InAs/GaAs quantum dots appears to be very sensitive to the initial GaAs nucleation temperature and thickness with strongest room-temperature emission at 400$^\circ\!$C (170 nm nucleation layer thickness), due to the lower density of defects generated under this growth condition, and stronger carrier confinement within the quantum dots.
|
|
Received: 23 December 2015
Published: 29 April 2016
|
|
|
|
|
|
[1] | Wang T, Liu H, Lee A, Pozzi F and Seeds A 2011 Opt. Express 19 11381 | [2] | Jalali B and Fathpour S 2006 J. Lightwave Technol. 24 4600 | [3] | Won R 2010 Nat. Photon. 4 498 | [4] | Liang D and Bowers J E 2010 Nat. Photon. 4 511 | [5] | Yang J, Bhattacharya P and Mi Z 2007 IEEE Trans. Electron Devices 54 2849 | [6] | Ting S M and Filtzgerald E A 2000 J. Appl. Phys. 87 2618 | [7] | Lee A, Jiang Q, Tang M, Seeds A and Liu H 2012 Opt. Express 20 22181 | [8] | Wong C S and Bennett N S 2011 Microelectron Eng. 88 472 | [9] | Liu H, Wang T, Jiang Q, Hogg R, Tutu F, Pozzi F and Seeds A 2011 Nat. Photon. 5 416 | [10] | Brammertz G, Caymax M, Meuris M, Heyns M, Mols Y, Degroote S and Leys M 2008 Thin Solid Films 517 148 | [11] | Sellers I, Liu H, Groom K, Childs D, Robbins D, Badcock T, Hopkinson M, Mowbray D and Skolnick M 2004 Electron. Lett. 40 1412 | [12] | Wang T, Lee A, Tutu F, Seeds A and Liu H 2012 Appl. Phys. Lett. 100 052113 | [13] | Liu H, Sellers I, Badcock T, Mowbray D, Skolnick M, Groom K, Gutierrez M, Hopkinson M, Ng J, David J and Beanland R 2004 Appl. Phys. Lett. 85 704 | [14] | Badcock T, Royce R, Mowbray D, Skolnick M, Liu H, Hopkinson M, Groom K and Jiang Q 2007 Appl. Phys. Lett. 90 111102 | [15] | Clawson A R 2001 Mater. Sci. Eng. 31 1 | [16] | Chen R, Liu H and Sun H 2010 J. Appl. Phys. 107 013513 | [17] | Ban K Y, Hong W K, Bremner S P, Dahal S N, McFelea H and Honsberg C B 2011 J. Appl. Phys. 109 014312 | [18] | Espinola J L C, Dybic M, Ostapenko S, Torchynska T V and Polupan G 2007 J. Phys.: Conf. Ser. 61 180 | [19] | Jang Y D, Park J, Lee D, Mowbray D J, Skolnick M S, Liu H Y, Hopkinson M and Hogg R A 2009 Appl. Phys. Lett. 95 171902 | [20] | Bouza?ene L, Saidi F, Sfaxi L and Maaref H 2010 Physica B 405 744 | [21] | Liu A Y, Zhang C, Norman J, Snyder A, Lubyshev D, Fastenau J M, Liu A W K, Gossard A C and Bowers J E 2014 Appl. Phys. Lett. 104 041104 |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|