Chin. Phys. Lett.  2016, Vol. 33 Issue (04): 044206    DOI: 10.1088/0256-307X/33/4/044206
FUNDAMENTAL AREAS OF PHENOMENOLOGY(INCLUDING APPLICATIONS) |
Optical Transfer Function Reconstruction in Incoherent Fourier Ptychography
Zong-Liang Xie1,2,3, Bo Qi1,2**, Hao-Tong Ma1,2,4, Ge Ren1,2, Yu-Feng Tan1,2,3, Bi He1,2,3, Heng-Liang Zeng1,2,3, Chuan Jiang1,2,3
1Institute of Optics and Electronics, Chinese Academy of Sciences, Chengdu 610209
2Key Laboratory of Optical Engineering, Chinese Academy of Sciences, Chengdu 610209
3University of Chinese Academy of Sciences, Beijing 100049
4College of Opto-electric Science and Engineering, National University of Defense Technology, Changsha 410073
Cite this article:   
Zong-Liang Xie, Bo Qi, Hao-Tong Ma et al  2016 Chin. Phys. Lett. 33 044206
Download: PDF(888KB)   PDF(mobile)(KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract An optical transfer function (OTF) reconstruction model is first embedded into incoherent Fourier ptychography (IFP). The leading result is a proposed algorithm that can recover both the super-resolution image and the OTF of an imaging system with unknown aberrations simultaneously. This model overcomes the difficult problem of OTF estimation that the previous IFP faces. The effectiveness of this algorithm is demonstrated by numerical simulations, and the superior reconstruction is presented. We believe that the reported algorithm can extend the original IFP for more complex conditions and may provide a solution by using structured light for characterization of optical systems' aberrations.
Received: 18 December 2015      Published: 29 April 2016
PACS:  42.30.-d (Imaging and optical processing)  
  42.30.Kq (Fourier optics)  
  42.30.Lr (Modulation and optical transfer functions)  
  42.30.Wb (Image reconstruction; tomography)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/33/4/044206       OR      https://cpl.iphy.ac.cn/Y2016/V33/I04/044206
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Zong-Liang Xie
Bo Qi
Hao-Tong Ma
Ge Ren
Yu-Feng Tan
Bi He
Heng-Liang Zeng
Chuan Jiang
[1]Zheng G A, Horstmeyer R and Yang C H 2013 Nat. Photon. 7 739
[2]Dong S Y, Shiradkar R, Nanda P and Zheng G A 2014 Biomed. Opt. Express 5 1757
[3]Thibault P and Menzel A 2013 Nature 494 68
[4]Dong S Y, Nanda P, Shiradkar R, Guo K K and Zheng G A 2014 Opt. Express 22 20856
[5]Dong S Y, Nanda P, Guo K K, Liao J and Zheng G A 2015 Photon. Res. 3 19
[6]Goodman J W 2004 Introduction to Fourier Optics 3rd edn (Austin TX: Roberts and Company)
[7]Schmidt J D 2010 Numerical Simulation of Optical Wave Propagation (Bellingham: SPIE)
[8]Maiden A M and Rodenburg J M 2009 Ultramicroscopy 109 1256
[9]Shi Y S, Wang Y L, Li T, Gao Q K, Wan H, Zhang S G and Wu Z B 2013 Chin. Phys. Lett. 30 074203
[10]Shi Y S, Wang Y L and Zhang S G 2013 Chin. Phys. Lett. 30 054203
[11]Xie Z L, Ma H T, Qi B, Ren G, Tan Y F, He B, Zeng H L and Jiang C 2015 Chin. Phys. Lett. 32 124203
Related articles from Frontiers Journals
[1] Ling-Jun Kong, Rui Liu, Wen-Rong Qi, Zhou-Xiang Wang, Shuang-Yin Huang, Chenghou Tu, Yongnan Li, Hui-Tian Wang. Asymptotical Locking Tomography of High-Dimensional Entanglement[J]. Chin. Phys. Lett., 2020, 37(3): 044206
[2] Li-Qi Yu, Xin-Yu Xu, Zhen-Feng Zhang, Qi Feng, Bin Zhang, Ying-Chun Ding, Qiang Liu. Label-Free Microscopic Imaging Based on the Random Matrix Theory in Wavefront Shaping[J]. Chin. Phys. Lett., 2019, 36(11): 044206
[3] Rui Liu, Ling-Jun Kong, Yu Si, Zhou-Xiang Wang, Wen-Rong Qi, Chenghou Tu, Yongnan Li, Hui-Tian Wang. Multi-Path Ghost Imaging by Means of an Additional Time Correlation[J]. Chin. Phys. Lett., 2019, 36(4): 044206
[4] You-Quan Jia, Qi Feng, Bin Zhang, Wei Wang, Cheng-You Lin, Ying-Chun Ding. Superpixel-Based Complex Field Modulation Using a Digital Micromirror Device for Focusing Light through Scattering Media[J]. Chin. Phys. Lett., 2018, 35(5): 044206
[5] Zhao-Hui Li, Jian-Qi Zhang, De-Lian Liu, Xiao-Rui Wang. Numerical Evaluation of Effect of Motion of Samples on Ptychographic Imaging and Solution with a Random Phase Modulator[J]. Chin. Phys. Lett., 2016, 33(02): 044206
[6] Tuo Li, Yi-Shi Shi. Attack on Optical Double Random Phase Encryption Based on the Principle of Ptychographical Imaging[J]. Chin. Phys. Lett., 2016, 33(01): 044206
[7] XIE Zong-Liang, MA Hao-Tong, QI Bo, REN Ge, TAN Yu-Feng, HE Bi, ZENG Heng-Liang, JIANG Chuan. Aperture-Scanning Fourier Ptychographic Encoding with Phase Modulation[J]. Chin. Phys. Lett., 2015, 32(12): 044206
[8] GAO Lu, TIAN Jia, LIN Hai-Long. Experimental Detection of Depth of Field for a Thermal Light Lensless Ghost Imaging System[J]. Chin. Phys. Lett., 2015, 32(01): 044206
[9] LI Qiang, PU Xiao-Yun, YANG Rui-Fen, ZHAI Ying. Measurement of Diffusion Coefficient of Liquids by Using an Asymmetric Liquid-Core Cylindrical Lens: Observing the Diffusion Process Directly[J]. Chin. Phys. Lett., 2014, 31(05): 044206
[10] WAN Yu-Hong, MAN Tian-Long, CHEN Hao, JIANG Zhu-Qing, WANG Da-Yong. Effect of Wavefront Properties on Numerical Aperture of Fresnel Hologram in Incoherent Holographic Microscopy[J]. Chin. Phys. Lett., 2014, 31(04): 044206
[11] SHI Yi-Shi , WANG Ya-Li, LI Tuo, GAO Qian-Kun, WAN Hao, ZHANG San-Guo, WU Zhi-Bo . Ptychographical Imaging Algorithm with a Single Random Phase Encoding[J]. Chin. Phys. Lett., 2013, 30(7): 044206
[12] SHI Yi-Shi, WANG Ya-Li, ZHANG San-Guo. Generalized Ptychography with Diverse Probes[J]. Chin. Phys. Lett., 2013, 30(5): 044206
[13] ZHANG Man, PAN Rui, XIONG Wei, HE Ting, SHEN Jing-Ling. A Compressed Terahertz Imaging Method[J]. Chin. Phys. Lett., 2012, 29(10): 044206
[14] PAN Xing-Chen, LIN Qiang, LIU Cheng, and ZHU Jian-Qiang. A Lens Assisted Phase Microscope Based on Ptychography[J]. Chin. Phys. Lett., 2012, 29(8): 044206
[15] WANG Chen**, QIAO Ling-Ling, MAO Zheng-Le . Simulation of Far-Field Superresolution Fluorescence Imaging with Two-Color One-Photon Excitation of Reversible Photoactivatable Protein[J]. Chin. Phys. Lett., 2011, 28(5): 044206
Viewed
Full text


Abstract