GENERAL |
|
|
|
|
Coherence of Disordered Bosonic Gas with Two- and Three-Body Interactions |
Xin Zhang, Zi-Fa Yu, Ju-Kui Xue** |
Key Laboratory of Atomic and Molecular Physics and Functional Materials of Gansu Province, College of Physics and Electronics Engineering, Northwest Normal University, Lanzhou 730070
|
|
Cite this article: |
Xin Zhang, Zi-Fa Yu, Ju-Kui Xue 2016 Chin. Phys. Lett. 33 040302 |
|
|
Abstract We theoretically and numerically investigate the coherence of disordered bosonic gas with effective two- and three-body interactions within a two-site Bose–Hubbard model. By properly adjusting the two- and three-body interactions and the disorder, the coherence of the system exhibits new and interesting phenomena, including the resonance character of coherence against the disorder in the purely two- or three-body interactions system. More interestingly, the disorder and three-body interactions together can suppress the coherence of the purely three-body interactions system, which is different from the case in which the disorder and two-body interactions together can enhance the coherence in certain values of two-body interaction. Furthermore, when two- or three-body interactions are attractive or repulsive, the phase coherence exhibits completely different phenomena. In particular, if two- or three-body interactions are attractive, the coherence of the system can be significantly enhanced in certain regions. Correspondingly, the phase coherence of the system is strongly related to the effective interaction energy. The results provide a possible way for studying the coherence of bosonic gas with multi-atoms' interactions in the presence of the disorder.
|
|
Received: 07 January 2016
Published: 29 April 2016
|
|
PACS: |
03.75.Lm
|
(Tunneling, Josephson effect, Bose-Einstein condensates in periodic potentials, solitons, vortices, and topological excitations)
|
|
03.75.Kk
|
(Dynamic properties of condensates; collective and hydrodynamic excitations, superfluid flow)
|
|
67.85.Hj
|
(Bose-Einstein condensates in optical potentials)
|
|
|
|
|
[1] | Lee P A and Ramakrishnan T V 1985 Rev. Mod. Phys. 57 287 | [2] | Reppy J D 1992 J. Low Temp. Phys. 87 205 | [3] | Fisher D S 1980 Phys. Rev. B 22 1190 | [4] | Hebard A F and Paalanen M A 1985 Phys. Rev. Lett. 54 2155 | [5] | Wolf P E and Maret G 1985 Phys. Rev. Lett. 55 2696 | [6] | Billy J et al 2008 Nature 453 891 | [7] | Roati T et al 2008 Nature 453 895 | [8] | Deissler B et al 2010 Nat. Phys. 6 354 | [9] | Aleiner I L, Altshuler B L and Shlyapnikov G V 2010 Nat. Phys. 6 900 | [10] | White M, Pasienski M, McKay D, Zhou S Q, Ceperley D and DeMarco B 2009 Phys. Rev. Lett. 102 055301 | [11] | Krauth W, Trivedi N and Ceperley D 1991 Phys. Rev. Lett. 67 2307 | [12] | Scalettar R T, Batrouni G G and Zimanyi G T 1991 Phys. Rev. Lett. 66 3144 | [13] | Sengupta P, Raghavan A and Haas S 2007 New J. Phys. 9 103 | [14] | Horak P, Courtois J Y and Grynberg G 1998 Phys. Rev. A 58 3953 | [15] | Sanpera A, Kantian A, Sanchez-Palencia L, Zakrzewski J and Lewenstein M 2004 Phys. Rev. Lett. 93 040401 | [16] | Fallani L, Lye J E, Guarrera V, Fort C and Inguscio M 2007 Phys. Rev. Lett. 98 130404 | [17] | Zhou Q and Sarma S D 2010 Phys. Rev. A 82 041601 | [18] | Chereji R V, Tolkunov D, Locke G and Morozov A V 2011 Phys. Rev. E 83 050903 | [19] | Zhang Z H, Lu P, Feng S P and Yang S J 2012 Phys. Rev. A 85 033617 | [20] | Kraemer T et al 2006 Nature 440 315 | [21] | Zhang A X and Xue J K 2007 Phys. Rev. A 75 013624 | [22] | Johnson P R, Tiesinga E, Porto J V and Williams C J 2009 New J. Phys. 11 093022 | [23] | Smirne G et al 2007 Phys. Rev. A 75 020702 | [24] | Royet U et al 2010 J. Phys. B: At. Mol. Opt. Phys. 43 025003 | [25] | Buchler H P et al 2007 Nat. Phys. 3 726 | [26] | D'Cruz C and Pachos J K 2005 Phys. Rev. A 72 043608 | [27] | Penson K A, Debierre J M and Turban L 1988 Phys. Rev. B 37 7884 | [28] | Anglès d'Auriac J C and Iglói F 1998 Phys. Rev. E 58 241 | [29] | Fu L and Liu J 2006 Phys. Rev. A 74 063614 | [30] | Wang G F, Fu L B and Liu J 2006 Phys. Rev. A 73 013619 | [31] | Wang B B, Fu P M, Liu J and Wu B 2006 Phys. Rev. A 74 063610 | [32] | Wen L H, Xiong H W and Wu B 2010 Phys. Rev. A 82 053627 | [33] | He P S, You W L and Liu W M 2013 Phys. Rev. A 87 063603 | [34] | Lu G B, Hai W H and Zhong H H 2009 Phys. Rev. A 80 013411 | [35] | Wu Y and Yang X X 2003 Phys. Rev. A 68 013608 | [36] | Wu Y and Yang X X 2007 Phys. Rev. Lett. 98 013601 | [37] | Niu Z X and Xue J K 2014 Chin. Phys. Lett. 31 100301 | [38] | Daley A J and Simon J 2014 Phys. Rev. A 89 053619 | [39] | Qi R, Yu X L, Li Z B and Liu W M 2009 Phys. Rev. Lett. 102 185301 | [40] | Wang J G, Zhang A X, Tang R A, Gao J M and Xue J K 2013 J. Phys. B 46 095301 | [41] | Luo X B, Xie Q T and Wu B 2008 Phys. Rev. A 77 053601 | [42] | Yu Z F and Xue J K 2014 Phys. Rev. A 90 033618 | [43] | Meng X J, Feng H R and Zheng Y J 2014 Chin. Phys. B 23 040305 |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|