Chin. Phys. Lett.  2016, Vol. 33 Issue (04): 040302    DOI: 10.1088/0256-307X/33/4/040302
GENERAL |
Coherence of Disordered Bosonic Gas with Two- and Three-Body Interactions
Xin Zhang, Zi-Fa Yu, Ju-Kui Xue**
Key Laboratory of Atomic and Molecular Physics and Functional Materials of Gansu Province, College of Physics and Electronics Engineering, Northwest Normal University, Lanzhou 730070
Cite this article:   
Xin Zhang, Zi-Fa Yu, Ju-Kui Xue 2016 Chin. Phys. Lett. 33 040302
Download: PDF(666KB)   PDF(mobile)(KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract We theoretically and numerically investigate the coherence of disordered bosonic gas with effective two- and three-body interactions within a two-site Bose–Hubbard model. By properly adjusting the two- and three-body interactions and the disorder, the coherence of the system exhibits new and interesting phenomena, including the resonance character of coherence against the disorder in the purely two- or three-body interactions system. More interestingly, the disorder and three-body interactions together can suppress the coherence of the purely three-body interactions system, which is different from the case in which the disorder and two-body interactions together can enhance the coherence in certain values of two-body interaction. Furthermore, when two- or three-body interactions are attractive or repulsive, the phase coherence exhibits completely different phenomena. In particular, if two- or three-body interactions are attractive, the coherence of the system can be significantly enhanced in certain regions. Correspondingly, the phase coherence of the system is strongly related to the effective interaction energy. The results provide a possible way for studying the coherence of bosonic gas with multi-atoms' interactions in the presence of the disorder.
Received: 07 January 2016      Published: 29 April 2016
PACS:  03.75.Lm (Tunneling, Josephson effect, Bose-Einstein condensates in periodic potentials, solitons, vortices, and topological excitations)  
  03.75.Kk (Dynamic properties of condensates; collective and hydrodynamic excitations, superfluid flow)  
  67.85.Hj (Bose-Einstein condensates in optical potentials)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/33/4/040302       OR      https://cpl.iphy.ac.cn/Y2016/V33/I04/040302
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Xin Zhang
Zi-Fa Yu
Ju-Kui Xue
[1]Lee P A and Ramakrishnan T V 1985 Rev. Mod. Phys. 57 287
[2]Reppy J D 1992 J. Low Temp. Phys. 87 205
[3]Fisher D S 1980 Phys. Rev. B 22 1190
[4]Hebard A F and Paalanen M A 1985 Phys. Rev. Lett. 54 2155
[5]Wolf P E and Maret G 1985 Phys. Rev. Lett. 55 2696
[6]Billy J et al 2008 Nature 453 891
[7]Roati T et al 2008 Nature 453 895
[8]Deissler B et al 2010 Nat. Phys. 6 354
[9]Aleiner I L, Altshuler B L and Shlyapnikov G V 2010 Nat. Phys. 6 900
[10]White M, Pasienski M, McKay D, Zhou S Q, Ceperley D and DeMarco B 2009 Phys. Rev. Lett. 102 055301
[11]Krauth W, Trivedi N and Ceperley D 1991 Phys. Rev. Lett. 67 2307
[12]Scalettar R T, Batrouni G G and Zimanyi G T 1991 Phys. Rev. Lett. 66 3144
[13]Sengupta P, Raghavan A and Haas S 2007 New J. Phys. 9 103
[14]Horak P, Courtois J Y and Grynberg G 1998 Phys. Rev. A 58 3953
[15]Sanpera A, Kantian A, Sanchez-Palencia L, Zakrzewski J and Lewenstein M 2004 Phys. Rev. Lett. 93 040401
[16]Fallani L, Lye J E, Guarrera V, Fort C and Inguscio M 2007 Phys. Rev. Lett. 98 130404
[17]Zhou Q and Sarma S D 2010 Phys. Rev. A 82 041601
[18]Chereji R V, Tolkunov D, Locke G and Morozov A V 2011 Phys. Rev. E 83 050903
[19]Zhang Z H, Lu P, Feng S P and Yang S J 2012 Phys. Rev. A 85 033617
[20]Kraemer T et al 2006 Nature 440 315
[21]Zhang A X and Xue J K 2007 Phys. Rev. A 75 013624
[22]Johnson P R, Tiesinga E, Porto J V and Williams C J 2009 New J. Phys. 11 093022
[23]Smirne G et al 2007 Phys. Rev. A 75 020702
[24]Royet U et al 2010 J. Phys. B: At. Mol. Opt. Phys. 43 025003
[25]Buchler H P et al 2007 Nat. Phys. 3 726
[26]D'Cruz C and Pachos J K 2005 Phys. Rev. A 72 043608
[27]Penson K A, Debierre J M and Turban L 1988 Phys. Rev. B 37 7884
[28]Anglès d'Auriac J C and Iglói F 1998 Phys. Rev. E 58 241
[29]Fu L and Liu J 2006 Phys. Rev. A 74 063614
[30]Wang G F, Fu L B and Liu J 2006 Phys. Rev. A 73 013619
[31]Wang B B, Fu P M, Liu J and Wu B 2006 Phys. Rev. A 74 063610
[32]Wen L H, Xiong H W and Wu B 2010 Phys. Rev. A 82 053627
[33]He P S, You W L and Liu W M 2013 Phys. Rev. A 87 063603
[34]Lu G B, Hai W H and Zhong H H 2009 Phys. Rev. A 80 013411
[35]Wu Y and Yang X X 2003 Phys. Rev. A 68 013608
[36]Wu Y and Yang X X 2007 Phys. Rev. Lett. 98 013601
[37]Niu Z X and Xue J K 2014 Chin. Phys. Lett. 31 100301
[38]Daley A J and Simon J 2014 Phys. Rev. A 89 053619
[39]Qi R, Yu X L, Li Z B and Liu W M 2009 Phys. Rev. Lett. 102 185301
[40]Wang J G, Zhang A X, Tang R A, Gao J M and Xue J K 2013 J. Phys. B 46 095301
[41]Luo X B, Xie Q T and Wu B 2008 Phys. Rev. A 77 053601
[42]Yu Z F and Xue J K 2014 Phys. Rev. A 90 033618
[43]Meng X J, Feng H R and Zheng Y J 2014 Chin. Phys. B 23 040305
Related articles from Frontiers Journals
[1] Haipeng Xue, Lingchii Kong, and Biao Wu. Logarithmic Quantum Time Crystal[J]. Chin. Phys. Lett., 2022, 39(8): 040302
[2] Rong Du, Jian-Chong Xing, Bo Xiong, Jun-Hui Zheng, and Tao Yang. Quench Dynamics of Bose–Einstein Condensates in Boxlike Traps[J]. Chin. Phys. Lett., 2022, 39(7): 040302
[3] Jun-Tao He, Ping-Ping Fang, and Ji Lin. Multi-Type Solitons in Spin-Orbit Coupled Spin-1 Bose–Einstein Condensates[J]. Chin. Phys. Lett., 2022, 39(2): 040302
[4] Peng Gao, Zeyu Wu, Zhan-Ying Yang, and Wen-Li Yang. Reverse Rotation of Ring-Shaped Perturbation on Homogeneous Bose–Einstein Condensates[J]. Chin. Phys. Lett., 2021, 38(9): 040302
[5] Zhao-Long Gu and Jian-Xin Li. Itinerant Topological Magnons in SU(2) Symmetric Topological Hubbard Models with Nearly Flat Electronic Bands[J]. Chin. Phys. Lett., 2021, 38(5): 040302
[6] Hao Li, Chong Liu, Zhan-Ying Yang, Wen-Li Yang. Quantized Superfluid Vortex Filaments Induced by the Axial Flow Effect[J]. Chin. Phys. Lett., 2020, 37(3): 040302
[7] Yu Mo, Cong Zhang, Shiping Feng, Shi-Jie Yang. Solitonic Diffusion of Wavepackets in One-Dimensional Bose–Einstein Condensates[J]. Chin. Phys. Lett., 2019, 36(12): 040302
[8] Jian-Wen Zhou, Xiao-Xun Li, Rui Gao, Wen-Shan Qin, Hao-Hao Jiang, Tao-Tao Li, Ju-Kui Xue. Modulational Instability of Trapped Two-Component Bose–Einstein Condensates[J]. Chin. Phys. Lett., 2019, 36(9): 040302
[9] Shi-Feng Yang, Zi-Tong Xu, Kai Wang, Xiu-Fei Li, Yue-Yang Zhai, Xu-Zong Chen. A Quasi-1D Potential for Bose Gas Phase Fluctuations[J]. Chin. Phys. Lett., 2019, 36(8): 040302
[10] C. Chen, Q. Liu, T. Z. Zhang, D. Li, P. P. Shen, X. L. Dong, Z.-X. Zhao, T. Zhang, D. L. Feng. Quantized Conductance of Majorana Zero Mode in the Vortex of the Topological Superconductor (Li$_{0.84}$Fe$_{0.16}$)OHFeSe[J]. Chin. Phys. Lett., 2019, 36(5): 040302
[11] Bao-Guo Yang, Peng-Ju Tang, Xin-Xin Guo, Xu-Zong Chen, Biao Wu, Xiao-Ji Zhou. Period-Doubled Bloch States in a Bose–Einstein Condensate[J]. Chin. Phys. Lett., 2018, 35(7): 040302
[12] Peng Peng, Liang-Hui Huang, Dong-Hao Li, Zeng-Ming Meng, Peng-Jun Wang, Jing Zhang. Experimental Observation of Spin-Exchange in Ultracold Fermi Gases[J]. Chin. Phys. Lett., 2018, 35(3): 040302
[13] Xu-Dan Chai, Zi-Fa Yu, Ai-Xia Zhang, Ju-Kui Xue. Sound Wave of Spin–Orbit Coupled Bose–Einstein Condensates in Optical Lattice[J]. Chin. Phys. Lett., 2017, 34(9): 040302
[14] Zheng Zhou, Hong-Hua Zhong, Bo Zhu, Fa-Xin Xiao, Ke Zhu, Jin-Tao Tan. Collision Dynamics of Dissipative Matter-Wave Solitons in a Perturbed Optical Lattice[J]. Chin. Phys. Lett., 2016, 33(11): 040302
[15] Yu-E Li, Ju-Kui Xue. Moving Matter-Wave Solitons in Spin–Orbit Coupled Bose–Einstein Condensates[J]. Chin. Phys. Lett., 2016, 33(10): 040302
Viewed
Full text


Abstract