GENERAL |
|
|
|
|
Security of the Decoy State Two-Way Quantum Key Distribution with Finite Resources |
Ya-Bin Gu1,2, Wan-Su Bao1,2**, Yang Wang1,2, Chun Zhou1,2 |
1Zhengzhou Information Science and Technology Institute, Zhengzhou 450004
2Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei 230026 |
|
Cite this article: |
Ya-Bin Gu, Wan-Su Bao, Yang Wang et al 2016 Chin. Phys. Lett. 33 040301 |
|
|
Abstract The quantum key distribution (QKD) allows two parties to share a secret key by typically making use of a one-way quantum channel. However, the two-way QKD has its own unique advantages, which means the two-way QKD has become a focus recently. To improve the practical performance of the two-way QKD, we present a security analysis of a two-way QKD protocol based on the decoy method with heralded single-photon sources (HSPSs). We make use of two approaches to calculate the yield and the quantum bit error rate of single-photon and two-photon pulses. Then we present the secret key generation rate based on the GLLP formula. The numerical simulation shows that the protocol with HSPSs has an advantage in the secure distance compared with weak coherent state sources. In addition, we present the final secret key generation rate of the LM05 protocol with finite resources by considering the statistical fluctuation of the yield and the error rate.
|
|
Received: 12 November 2015
Published: 29 April 2016
|
|
PACS: |
03.67.Dd
|
(Quantum cryptography and communication security)
|
|
03.67.Hk
|
(Quantum communication)
|
|
|
|
|
[1] |
Bennett C H and Brassard G 1984 Proceedings of IEEE International Conference on Computers, Systems and Signal Processing (Bangalore, India) p 175 |
[2] |
Muller A, Zbinde H and Gisin N 1996 Europhys. Lett. 33 335 |
[3] |
Bostrom K and Felbinger T 2002 Phys. Rev. Lett. 89 187902 |
[4] |
Wojcik A 2003 Phys. Rev. Lett. 90 157901 |
[5] |
Cai Q Y 2003 Phys. Rev. Lett. 91 109801 |
[6] |
Cai Q Y and Li B W 2004 Phys. Rev. A 69 054301 |
[7] |
Degiovanni I P, Berchera I R, Castelletto S, Rastello L M, Bovino F A, Colla A M and Castagnoli G 2004 Phys. Rev. A 69 032310 |
[8] |
Degiovanni I P, Berchera I R, Castelletto S, Rastello L M, Bovino F A, Colla A M and Castagnoli G 2005 Phys. Rev. A 71 16302 |
[9] |
Lucamarini M and Mancini S 2005 Phys. Rev. Lett. 94 140501 |
[10] |
Beaudry N J, Lucamarini M, Mancini S and Renner R 2013 Phys. Rev. A 88 062302 |
[11] |
Hwang W Y 2003 Phys. Rev. Lett. 91 057901 |
[12] |
Shaari J S, Bahari I and Ali S 2011 Opt. Commun. 284 697 |
[13] |
Lo H K, Ma X F and Chen K 2005 Phys. Rev. Lett. 94 230504 |
[14] |
Ma X F, Qi B, Zhao Y and Lo H K 2005 Phys. Rev. A 72 012326 |
[15] |
Wang Q, Wang X B and Guo G C 2007 Phys. Rev. A 75 012312 |
[16] |
Scarani V and Renner R 2008 Phys. Rev. Lett. 100 200501 |
[17] |
Li H W, Zhao Y B, Yin Z Q, Wang S, Han Z F, Bao W S and Guo G C 2009 Opt. Commun. 282 4162 |
[18] |
Tomamichel M, Lim C C W and Renner R 2012 Nat. Commun. 3 634 |
[19] |
Du Y N, Xie W Z, Jin X et al 2015 Acta Phys. Sin. 64 110301 (in Chinese) |
[20] |
Tomoyuki H and Takayoshi K 2006 Phys. Rev. A 73 032331 |
[21] |
Lucamarini M, Cere A, Giuseppe G D, Mancini S, Vitali D and Tombesi P 2007 Open Sys. Inf. Dyn. 14 169 |
[22] |
Tomamichel M and Renner R 2011 Phys. Rev. Lett. 106 110506 |
[23] |
Devetak I and Winter A 2005 Proc. R. Soc. A 461 207 |
[24] |
Gottesman D, Lo H K, Lutkenhaus N and Preskill J 2004 Quantum Inf. Comput. 4 325 |
[25] |
Gobby C, Yuan Z L and Shields A J 2004 Appl. Phys. Lett. 84 3762 |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|