Chin. Phys. Lett.  2016, Vol. 33 Issue (02): 027302    DOI: 10.1088/0256-307X/33/2/027302
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
The Hole Transport Characteristics of 1, 4, 5, 8, 9 and 11-Hexaazatriphenylene-Hexacarbonitrile by Blending
Yan-Ping Wang1, Jin-Ying Huang1, Jiang-Shan Chen1, Xian-Feng Qiao1, De-Zhi Yang1, Dong-Ge Ma1**, Li-Song Dong2**
1State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022
2Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022
Cite this article:   
Yan-Ping Wang, Jin-Ying Huang, Jiang-Shan Chen et al  2016 Chin. Phys. Lett. 33 027302
Download: PDF(979KB)   PDF(mobile)(KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract The hole transport characteristics of molecule blends of 1, 4, 5, 8, 9 and 11-hexaazatriphenylene-hexacarbonitrile (HAT-CN): N,N'-di(naphthalene-1-yl)-N,N'-diphenyl-benzidine (NPB) and HAT-CN: 4,4'-cyclohexylidenebis[N,N-bis(4-methylphenyl)benzenamine] (TAPC) with various NPB and TAPC mixing concentrations (5–90 wt%) are studied. When the concentration is in the range of 5–80 wt%, it is found that the hole conductions in the two blends are space-charge-limited current (SCLC) with free trap distributions. The current–voltage characteristics of the two blends show SCLC with exponential trap distributions at the concentration of 90 wt%. The hole mobilities of the two blends are very close (10$^{-4}$–10$^{-3}$ cm$^{2}$V$^{-1}$s$^{-1}$), the dependence of electric field and temperature can be described by the modified Poole–Frenkel model. The hole mobility and activation energy of the two blends depending on concentration are similar.
Received: 09 October 2015      Published: 26 February 2016
PACS:  73.40.Lq (Other semiconductor-to-semiconductor contacts, p-n junctions, and heterojunctions)  
  73.50.Dn (Low-field transport and mobility; piezoresistance)  
  72.20.Ee (Mobility edges; hopping transport)  
  73.61.Ph (Polymers; organic compounds)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/33/2/027302       OR      https://cpl.iphy.ac.cn/Y2016/V33/I02/027302
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Yan-Ping Wang
Jin-Ying Huang
Jiang-Shan Chen
Xian-Feng Qiao
De-Zhi Yang
Dong-Ge Ma
Li-Song Dong
[1] Yu G, Gao J, Hummelen J C and Heeger A J 1995 Science 270 1789
[2] Brabec C J, Sariciftci N S and Hummelen J C 2001 Adv. Funct. Mater. 11 15
[3] Yu G and Heeger A J 1995 J. Appl. Phys. 78 4510
[4] Ma W L, Yang C Y, Gong X, Lee K and Heeger A J 2005 Adv. Funct. Mater. 15 1617
[5] Sun H D, Guo Q X, Yang D Z, Chen Y H, Chen J S and Ma D G 2015 ACS Photon. 2 27
[6] Chen Y H, Chen J S, Ma D G, Yan D H and Wang L X 2011 Appl. Phys. Lett. 99 103304
[7] Huang J, Li G and Yang Y 2005 Appl. Phys. Lett. 87 112105
[8] Li B X, Chen J S, Yang D Z and Ma D G 2011 Semicond. Sci. Technol. 26 115006
[9] Pacios R, Nelson J, Bradley D D C and Brabec C J 2003 Appl. Phys. Lett. 83 4764
[10] Kim Y K, Won Kim J and Park Y 2009 Appl. Phys. Lett. 94 063305
[11] Szalay P S, Galan-Mascaros J R, Schottel B L, Bacsa J, Perez L M, Ichimura A S, Chouai A and Dunbar K R 2004 J. Cluster Sci. 15 503
[12] Glowatzki H, Broker B, Blum R P, Hofmann O T, Vollmer A, Rieger R, Mullen K, Zojer E, Rabe J P and Koch N 2008 Nano Lett. 8 3825
[13] Yook K S, Jeon S O and Lee J Y 2009 Thin Solid Films 517 6109
[14] Diouf B B, Jeon W S, Park J S, Choi J W, Son Y H, Lim D C, Doh Y J and Kwon J H 2011 Synth. Met. 161 2087
[15] Falkenberg C, Olthof S, Rieger R, Baumgarten M, Muellen K, Leo K and Riede M 2011 Sol. Energ. Mat. Sol. C 95 927
[16] Niederhausen J, Amsalem P, Frisch J, Wilke A, Vollmer A, Rieger R, Muellen K, Rabe J P and Koch N 2011 Phys. Rev. B 84 165302
[17] Kim D H and Kim T W 2014 Org. Electron. 15 3452
[18] Liao L S, Slusarek W K, Hatwar T K, Ricks M L and Comfort D L T 2008 Adv. Mater. 20 324
[19] Murgatroyd P N 1970 J. Phys. D: Appl. Phys. 3 151
[20] Grover R, Srivastava R, Kamalasanan M N and Mehta D S 2012 Org. Electron. 13 3074
[21] Li C, Duan L, Li H Y and Qiu Y 2013 Org. Electron. 14 3312
[22] Li H Y, Duan L and Qiu Y 2014 J. Phys. Chem. C 118 29636
[23] Gill W D 1972 J. Appl. Phys. 43 5033
[24] B?ssler H 1993 Phys. Status Solidi B 175 15
Related articles from Frontiers Journals
[1] Ruiling Gao, Chao Liu, Le Fang, Bixia Yao, Wei Wu, Qiling Xiao, Shunbo Hu, Yu Liu, Heng Gao, Shixun Cao, Guangsheng Song, Xiangjian Meng, Xiaoshuang Chen, and Wei Ren. Two-Dimensional Electron Gas in MoSi$_{2}$N$_{4}$/VSi$_{2}$N$_{4}$ Heterojunction by First Principles Calculation[J]. Chin. Phys. Lett., 2022, 39(12): 027302
[2] Wen-Xue Huo, Ming-Long Zhao, Xian-Sheng Tang, Li-Li Han, Zhen Deng, Yang Jiang, Wen-Xin Wang, Hong Chen, Chun-Hua Du, and Hai-Qiang Jia. Effect of Dopant Concentration in a Base Layer on Photocurrent–Voltage Characteristics of Photovoltaic Power Converters[J]. Chin. Phys. Lett., 2020, 37(8): 027302
[3] Yu-Wei Li, Xin Wang, Guan-Wen Li, Yao Wu, Yu-Zhu Pan, Yu-Bing Xu, Jing Chen, Wei Lei. Fast Liquid Phase Epitaxial Growth for Perovskite Single Crystals[J]. Chin. Phys. Lett., 2020, 37(1): 027302
[4] Pei Li, Chao-Hui He, Gang Guo, Hong-Xia Guo, Feng-Qi Zhang, Jin-Xin Zhang, Shu-Ting Shi. Heavy Ion and Laser Microbeam Induced Current Transients in SiGe Heterojunction Bipolar Transistor[J]. Chin. Phys. Lett., 2017, 34(10): 027302
[5] LI Pei, GUO Hong-Xia, GUO Qi, ZHANG Jin-Xin, WEI Ying,. Laser-Induced Single Event Transients in Local Oxidation of Silicon and Deep Trench Isolation Silicon-Germanium Heterojunction Bipolar Transistors[J]. Chin. Phys. Lett., 2015, 32(08): 027302
[6] LI Lian-Bi, CHEN Zhi-Ming, REN Zhan-Qiang, GAO Zhan-Jun. Non-UV Photoelectric Properties of the Ni/n-Si/N+-SiC Isotype Heterostructure Schottky Barrier Photodiode[J]. Chin. Phys. Lett., 2013, 30(9): 027302
[7] GAO Jun-Ning,JIE Wan-Qi**,YUAN Yan-Yan,ZHA Gang-Qiang,XU Ling-Yan,WU Heng,WANG Ya-Bin,YU Hui,ZHU Jun-Fa. In-Situ SRPES Study on the Band Alignment of (0001)CdS/CdTe Heterojunction[J]. Chin. Phys. Lett., 2012, 29(5): 027302
[8] HUANG Jian**, WANG Lin-Jun, TANG Ke, XU Run, ZHANG Ji-Jun, LU Xiong-Gang, XIA Yi-Ben . Photoresponse Properties of an n-ZnS/p-Si Heterojunction[J]. Chin. Phys. Lett., 2011, 28(12): 027302
[9] FAN Hui-Jie, ZHANG Hui-Qiang, WU Jing-Jing, WEN Zheng-Fang, MA Feng-Ying** . Photovoltaic Behaviors in an Isotype n-TiO2/n-Si Heterojunction[J]. Chin. Phys. Lett., 2011, 28(12): 027302
[10] LI Na, YUE Chong-Xing**, LI Xu-Xin . Neutrino-Electron Scattering and the Little Higgs Models[J]. Chin. Phys. Lett., 2011, 28(10): 027302
[11] XU Jia-Xiong, YAO Ruo-He*, LIU Yu-Rong . Fabrication of a ZnO:Al/Amorphous-FeSi2 Heterojunction at Room Temperature[J]. Chin. Phys. Lett., 2011, 28(10): 027302
[12] JIN Ke-Xin**, LUO Bing-Cheng, ZHAO Sheng-Gui, WANG Jian-Yuan, CHEN Chang-Le . Leakage Current and Photovoltaic Properties in a Bi2Fe4O9/Si Heterostructure[J]. Chin. Phys. Lett., 2011, 28(8): 027302
[13] DUAN Li**, GAO Wei . Influence of Oxygen in Sputtering and Annealing Processes on Properties of ZnO:Ag Films Deposited by rf Sputtering[J]. Chin. Phys. Lett., 2011, 28(3): 027302
[14] YI Ming-Dong, **, XIE Ling-Hai, LIU Yu-Yu, DAI Yan-Feng, HUANG Jin-Ying . Electrical Characteristics of High-Performance ZnO Field-Effect Transistors Prepared by Ultrasonic Spray Pyrolysis Technique[J]. Chin. Phys. Lett., 2011, 28(1): 027302
[15] MA Jing-Jing, JIN Ke-Xin, LUO Bing-Cheng, FAN Fei, XING Hui, ZHOU Chao-Chao, CHEN Chang-Le. Rectifying and Photovoltage Properties of ZnO:Al/p-Si Heterojunction[J]. Chin. Phys. Lett., 2010, 27(10): 027302
Viewed
Full text


Abstract