CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
|
|
|
|
The Hole Transport Characteristics of 1, 4, 5, 8, 9 and 11-Hexaazatriphenylene-Hexacarbonitrile by Blending |
Yan-Ping Wang1, Jin-Ying Huang1, Jiang-Shan Chen1, Xian-Feng Qiao1, De-Zhi Yang1, Dong-Ge Ma1**, Li-Song Dong2** |
1State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022 2Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022
|
|
Cite this article: |
Yan-Ping Wang, Jin-Ying Huang, Jiang-Shan Chen et al 2016 Chin. Phys. Lett. 33 027302 |
|
|
Abstract The hole transport characteristics of molecule blends of 1, 4, 5, 8, 9 and 11-hexaazatriphenylene-hexacarbonitrile (HAT-CN): N,N'-di(naphthalene-1-yl)-N,N'-diphenyl-benzidine (NPB) and HAT-CN: 4,4'-cyclohexylidenebis[N,N-bis(4-methylphenyl)benzenamine] (TAPC) with various NPB and TAPC mixing concentrations (5–90 wt%) are studied. When the concentration is in the range of 5–80 wt%, it is found that the hole conductions in the two blends are space-charge-limited current (SCLC) with free trap distributions. The current–voltage characteristics of the two blends show SCLC with exponential trap distributions at the concentration of 90 wt%. The hole mobilities of the two blends are very close (10$^{-4}$–10$^{-3}$ cm$^{2}$V$^{-1}$s$^{-1}$), the dependence of electric field and temperature can be described by the modified Poole–Frenkel model. The hole mobility and activation energy of the two blends depending on concentration are similar.
|
|
Received: 09 October 2015
Published: 26 February 2016
|
|
PACS: |
73.40.Lq
|
(Other semiconductor-to-semiconductor contacts, p-n junctions, and heterojunctions)
|
|
73.50.Dn
|
(Low-field transport and mobility; piezoresistance)
|
|
72.20.Ee
|
(Mobility edges; hopping transport)
|
|
73.61.Ph
|
(Polymers; organic compounds)
|
|
|
|
|
[1] Yu G, Gao J, Hummelen J C and Heeger A J 1995 Science 270 1789 [2] Brabec C J, Sariciftci N S and Hummelen J C 2001 Adv. Funct. Mater. 11 15 [3] Yu G and Heeger A J 1995 J. Appl. Phys. 78 4510 [4] Ma W L, Yang C Y, Gong X, Lee K and Heeger A J 2005 Adv. Funct. Mater. 15 1617 [5] Sun H D, Guo Q X, Yang D Z, Chen Y H, Chen J S and Ma D G 2015 ACS Photon. 2 27 [6] Chen Y H, Chen J S, Ma D G, Yan D H and Wang L X 2011 Appl. Phys. Lett. 99 103304 [7] Huang J, Li G and Yang Y 2005 Appl. Phys. Lett. 87 112105 [8] Li B X, Chen J S, Yang D Z and Ma D G 2011 Semicond. Sci. Technol. 26 115006 [9] Pacios R, Nelson J, Bradley D D C and Brabec C J 2003 Appl. Phys. Lett. 83 4764 [10] Kim Y K, Won Kim J and Park Y 2009 Appl. Phys. Lett. 94 063305 [11] Szalay P S, Galan-Mascaros J R, Schottel B L, Bacsa J, Perez L M, Ichimura A S, Chouai A and Dunbar K R 2004 J. Cluster Sci. 15 503 [12] Glowatzki H, Broker B, Blum R P, Hofmann O T, Vollmer A, Rieger R, Mullen K, Zojer E, Rabe J P and Koch N 2008 Nano Lett. 8 3825 [13] Yook K S, Jeon S O and Lee J Y 2009 Thin Solid Films 517 6109 [14] Diouf B B, Jeon W S, Park J S, Choi J W, Son Y H, Lim D C, Doh Y J and Kwon J H 2011 Synth. Met. 161 2087 [15] Falkenberg C, Olthof S, Rieger R, Baumgarten M, Muellen K, Leo K and Riede M 2011 Sol. Energ. Mat. Sol. C 95 927 [16] Niederhausen J, Amsalem P, Frisch J, Wilke A, Vollmer A, Rieger R, Muellen K, Rabe J P and Koch N 2011 Phys. Rev. B 84 165302 [17] Kim D H and Kim T W 2014 Org. Electron. 15 3452 [18] Liao L S, Slusarek W K, Hatwar T K, Ricks M L and Comfort D L T 2008 Adv. Mater. 20 324 [19] Murgatroyd P N 1970 J. Phys. D: Appl. Phys. 3 151 [20] Grover R, Srivastava R, Kamalasanan M N and Mehta D S 2012 Org. Electron. 13 3074 [21] Li C, Duan L, Li H Y and Qiu Y 2013 Org. Electron. 14 3312 [22] Li H Y, Duan L and Qiu Y 2014 J. Phys. Chem. C 118 29636 [23] Gill W D 1972 J. Appl. Phys. 43 5033 [24] B?ssler H 1993 Phys. Status Solidi B 175 15 |
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|