Chin. Phys. Lett.  2016, Vol. 33 Issue (02): 023101    DOI: 10.1088/0256-307X/33/2/023101
ATOMIC AND MOLECULAR PHYSICS |
Electronic States of Difluorocarbene Calculated by Multireference Configuration Interaction Method
Er-Ping Sun1,2**, Ting-Qi Ren2, Qi-Xin Liu1,2, Quan Miao2, Jin-Juan Zhang2, Hai-Feng Xu3, Bing Yan3
1College of Electrical Engineering and Automation, Shandong University of Science and Technology, Qingdao 266590
2College of Electronic, Communication and Physics, Shandong University of Science and Technology, Qingdao 266590
3Institute of Atomic and Molecular Physics, Jilin University, Changchun 130012
Cite this article:   
Er-Ping Sun, Ting-Qi Ren, Qi-Xin Liu et al  2016 Chin. Phys. Lett. 33 023101
Download: PDF(623KB)   PDF(mobile)(KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

We investigate the geometries and energies of seven electronic states $\tilde {X}$$^{1}\!A_{1}$, $\tilde {A}$$^{1}\!B_{1}$, $\tilde {a}$$^{3}\!B_{1}$, $\tilde {B}$$^{1}\!A_{2}$, $\tilde {b}$$^{3}\!A_{2}$, $\tilde {C}$$^{1}\!B_{2}$ and $\tilde {c}$$^{3}\!B_{2}$ of CF$_{2}$ carbene using internally contracted multireference configuration interaction methods including Davidson correction (icMRCI+Q) with different basis sets aug-cc-pVXZ (X=T, Q, 5). For the first time, the potential energy curves of electronic states of CF$_{2}$ related to the lowest dissociation limit are calculated at the icMRCI+Q/aug-cc-pVTZ level. The ab initio results will further increase our understanding of the structures and dynamics of electronic states of CF$_{2}$ radical.

Received: 03 September 2015      Published: 26 February 2016
PACS:  31.15.ae (Electronic structure and bonding characteristics)  
  31.15.ag (Excitation energies and lifetimes; oscillator strengths)  
  31.15.ac (High-precision calculations for few-electron (or few-body) atomic systems)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/33/2/023101       OR      https://cpl.iphy.ac.cn/Y2016/V33/I02/023101
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Er-Ping Sun
Ting-Qi Ren
Qi-Xin Liu
Quan Miao
Jin-Juan Zhang
Hai-Feng Xu
Bing Yan

[1] Wentrup C 1962 Reactive Molecules the Neutral Reactive Intermediates in Organic Chemistry (New York: Wiley-Interscience)
[2] Liebman J F and Simons J 1986 Molecular Structure and Energetics (New York: Wiley-Interscience)
[3] Finlayson P B J and Pitts J N 1986 Atmospheric Chemistry: Fundamentals and Experimental Techniques (New York: Wiley-Interscience)
[4] Tomioka H 2004 Reactive Chemical Intermediates (New York: Wiley-Interscience)
[5] Kable S H, Reid S A and Sears T J 2009 Int. Rev. Phys. Chem. 28 435
[6] Venkateswarlu P 1950 Phys. Rev. 77 676
[7] Staemmler V 1974 Theor. Chim. Acta 35 309
[8] Cai Z 1993 J. Phys. Chem. 97 8399
[9] Schwartz M and Marshall P 1999 J. Phys. Chem. A 103 7900
[10] Sendt K and Bacskay G B 2000 J. Chem. Phys. 112 2227
[11] Lee E P F, Dyke J M and Wright T G 2000 Chem. Phys. Lett. 326 143
[12] Chau F T, Mok D K W, Lee E P F and Dyke J M 2005 ChemPhysChem 6 2037
[13] Sun E, Zhang J, Li R, Sun Q, Wei C, Xu H and Yan B 2014 Int. J. Quantum Chem. 114 66
[14] Laird R K, Andrews E B and Barrow R F 1950 Trans. Faraday Soc. 46 803
[15] Powell F X and David R L Jr 1966 J. Chem. Phys. 45 1067
[16] Mathews C W 1967 Can. J. Phys. 45 2355
[17] Mathews C W 1966 J. Chem. Phys. 45 1068
[18] Modica A P 1968 J. Phys. Chem. 72 4594
[19] Lefohn A S and Pimentel G C 1971 J. Chem. Phys. 55 1213
[20] Bondybey V E 1976 J. Mol. Spectrosc. 63 164
[21] Duperrex R and Bergh H 1979 J. Chem. Phys. 71 3613
[22] Hikida T, Tozawa T and Mori Y 1980 Chem. Phys. Lett. 70 579
[23] Davies P B, Lewis B W and Russell D K 1981 J. Chem. Phys. 75 5602
[24] Charo A and Lucia F C D 1982 J. Mol. Spectrosc. 94 363
[25] Ramsay D A 1985 J. Mol. Spectrosc. 113 495
[26] Schwartz R L, Davico G E, Ramond T M and Lineberger W C 1999 J. Phys. Chem. A 103 8213
[27] Cameron M R, Kable S H and Bacskay G B 1995 J. Chem. Phys. 103 4476
[28] Wang C, Chen C, Dai J and Ma X 1998 Chem. Phys. Lett. 288 473
[29] Chau F T, Dyke J M, Lee E P F and Mok D K W 2001 J. Chem. Phys. 115 5816
[30] Knowles P J and Werner H J 1988 Chem. Phys. Lett. 145 514
[31] Werner H J and Knowles P J 1988 J. Chem. Phys. 89 5803
[32] Langhoff S R and Davidson E R 1974 Int. J. Quantum Chem. 8 61
[33] Dunning J T H 1989 J. Chem. Phys. 90 1007
[34] Werner H J, Knowles P J et al 2010 MOLPRO: a package of ab initio programs
[35] Bacskay G B 2014 Theor. Chem. Acc. 133 1474
[36] Sun E, Li R, Sun Q, Wei C, Xu H and Yan B 2012 J. Phys. Chem. A 116 10435
[37] Sun E, Lv H, Shi D, Wei C, Xu H and Yan B 2014 J. Phys. Chem. A 118 2447

Related articles from Frontiers Journals
[1] Ruoyun Lv, Xigui Yang, Dongwen Yang, Chunyao Niu, Chunxiang Zhao, Jinxu Qin, Jinhao Zang, Fuying Dong, Lin Dong, and Chongxin Shan. Computational Prediction of a Novel Superhard $sp^{3}$ Trigonal Carbon Allotrope with Bandgap Larger than Diamond[J]. Chin. Phys. Lett., 2021, 38(7): 023101
[2] Qi-Xin Liu, Min Liang, Quan Miao, Jin-Juan Zhang, Er-Ping Sun, Ting-Qi Ren. Ab Initio Studies of Radicals HB$X$ ($X$=H, F, Cl, Br): Molecular Structure, Vibrational Frequencies and Potential Energy[J]. Chin. Phys. Lett., 2018, 35(1): 023101
[3] Jing-He Wu, Chang-Xin Liu. Ground-State Structure and Physical Properties of NB$_{2}$ Predicted from First Principles[J]. Chin. Phys. Lett., 2016, 33(03): 023101
[4] SUN Er-Ping, LIU Qi-Xin, REN Ting-Qi, SHAN Shi-Min, XU Hai-Feng, YAN Bing. Examination of Potential Energy Curves of CFCl by Multi-reference Configuration Interaction Method[J]. Chin. Phys. Lett., 2015, 32(12): 023101
[5] CHEN Yu-Hong, ZHANG Bing-Wen, ZHANG Cai-Rong, ZHANG Mei-Ling, KANG Long, LUO Yong-Chun. First-Principle Study of H2 Adsorption on Mg3N2(110) Surface[J]. Chin. Phys. Lett., 2014, 31(06): 023101
[6] GAO Hui, SUN Xun, LIU Bao-An, XU Ming-Xia, HU Guo-Hang, XU Xin-Guang, ZHAO Xian. Effect of S Substitution for P Point Defects in KDP Crystals: First-Principles Study[J]. Chin. Phys. Lett., 2010, 27(7): 023101
[7] ZHANG Yue-Xia, KANG Shuai, SHI Ting-Yun. Accurate One-Centre Method for Hydrogen Molecule Ions in Strong Magnetic Field[J]. Chin. Phys. Lett., 2008, 25(11): 023101
[8] I. Guseinov, R. Aydin, A. Bagci. Application of Complete Orthonormal Sets of Ψα-Exponential-Type Orbitals to Accurate Ground and Excited States Calculations of One-Electron Diatomic Molecules Using Single-Zeta Approximation[J]. Chin. Phys. Lett., 2008, 25(8): 023101
Viewed
Full text


Abstract