Chin. Phys. Lett.  2016, Vol. 33 Issue (02): 020201    DOI: 10.1088/0256-307X/33/2/020201
GENERAL |
The $SO(3,1)$-Gauge Invariant Approach to Fermions on Rindler Spacetime
Ciprian Dariescu, Marina-Aura Dariescu**
Faculty of Physics, Alexandru Ioan Cuza University of Iaşi, Bd. Carol I No. 11, Iaşi 700506, Romania
Cite this article:   
Ciprian Dariescu, Marina-Aura Dariescu 2016 Chin. Phys. Lett. 33 020201
Download: PDF(404KB)   PDF(mobile)(KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

We try to explicitly derive the Lorentz-gauge covariant Dirac equation, in terms of pseudo-orthonormal bases, on Rindler spacetime and to work out, with all the necessary coefficients, the respective closed-form solutions, in both Dirac and Weyl representations.

Received: 08 September 2015      Published: 26 February 2016
PACS:  02.40.Hw (Classical differential geometry)  
  03.65.Pm (Relativistic wave equations)  
  11.15.Kc (Classical and semiclassical techniques)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/33/2/020201       OR      https://cpl.iphy.ac.cn/Y2016/V33/I02/020201
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Ciprian Dariescu
Marina-Aura Dariescu

[1] Soffel M, Muller B and Greiner W 1980 Phys. Rev. D 22 1935
[2] Zhu J Y and Luo Z J 1999 Int. J. Theor. Phys. 38 575
[3] Jauregui R 1995 Int. J. Mod. Phys. A 10 1483
[4] Zhang J Y 2003 Commun. Theor. Phys. 40 244
[5] Boada A, Celi A, Latorre J I and Lewenstein M 2011 New J. Phys. 13 035002
[6] Sierra G 2014 J. Phys. A 47 325204
[7] Kobakhidze A, Manning A and Tureanu A 2015 arXiv:1508.06322
[8] Lin K and Yang S Z 2010 Acta Phys. Sin. 59 2223 (in Chinese)
[9] Lü Y and Hua W 2014 Chin. Phys. B 23 040403
[10] Longhi P and Soldati R 2013 Int. J. Mod. Phys. A 28 1350109
[11] Soldati R and Specchia C 2015 arXiv:1504.01880
[12] Ahluwalia D V, Lee C Y, Schritt D and Watson T F 2010 Phys. Lett. B 687 248
[13] Ahluwalia D V and Nayak A C 2014 Int. J. Mod. Phys. D 23 1430026

Related articles from Frontiers Journals
[1] YAN Lu, SONG Jun-Feng, QU Chang-Zheng** . Nonlocal Symmetries and Geometric Integrability of Multi-Component Camassa–Holm and Hunter–Saxton Systems[J]. Chin. Phys. Lett., 2011, 28(5): 020201
[2] K. Fakhar**, A. H. Kara. An Analysis of the Invariance and Conservation Laws of Some Classes of Nonlinear Ostrovsky Equations and Related Systems[J]. Chin. Phys. Lett., 2011, 28(1): 020201
[3] LI Yan-Yan. Integrable Curve Motions in n-Dimensional Centro-Affine Geometries[J]. Chin. Phys. Lett., 2010, 27(3): 020201
[4] LI Yan-Yan, QU Chang-Zheng,. Higher-Dimensional Integrable Systems Induced by Motions of Curves in Affine Geometries[J]. Chin. Phys. Lett., 2008, 25(6): 020201
[5] ZHU Jun-Yi, GENG Xian-Guo. Solution of Gauss--Codazzi Equation with Applications in the Tzitzeica Equation[J]. Chin. Phys. Lett., 2006, 23(11): 020201
Viewed
Full text


Abstract