Chin. Phys. Lett.  2016, Vol. 33 Issue (12): 128101    DOI: 10.1088/0256-307X/33/12/128101
CROSS-DISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY |
High Lattice Match Growth of InAsSb Based Materials by Molecular Beam Epitaxy
Yang Ren1, Rui-Ting Hao1**, Si-Jia Liu1, Jie Guo1, Guo-Wei Wang2,3, Ying-Qiang Xu2,3**, Zhi-Chuan Niu2,3
1Key Laboratory of Renewable Energy Advanced Materials and Manufacturing Technology (Ministry of Education), Provincial Key Laboratory of Rural Energy Engineering, Institute of Solar Energy, Yunnan Normal University, Kunming 650092
2State Key Laboratory for Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083
3Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei 230026
Cite this article:   
Yang Ren, Rui-Ting Hao, Si-Jia Liu et al  2016 Chin. Phys. Lett. 33 128101
Download: PDF(1324KB)   PDF(mobile)(KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract High lattice match growth of InAsSb based materials on GaSb substrates is demonstrated. The present results indicate that a stable substrate temperature and the optimal flux ratios are of critical importance in achieving a homogeneous InAsSb based material composition throughout the growth period. The quality of these epilayers is assessed using a high-resolution x-ray diffraction and atomic force microscope. The mismatch between the GaSb substrate and InAsSb alloy achieves almost zero, and the rms surface roughness of InAsSb alloy achieves around 1.7 ? over an area of 28 μm $\times$ 28 μm. At the same time, the mismatches between GaSb and InAs/InAs$_{0.73}$Sb$_{0.27}$ superlattices (SLs) achieve approximately 100 arcsec (75 periods) and zero (300 periods), with the surface rms roughnesses of InAs/InAs$_{0.73}$Sb$_{0.27}$ SLs around 1.8 ? (75 periods) and 2.1 ? (300 periods) over an area of 20 μm$\times$20 μm, respectively. After fabrication and characterization of the devices, the dynamic resistance of the n-barrier-n InAsSb photodetector near zero bias is of the order of 10$^{6}$ $\Omega\cdot$cm$^{2}$. At 77 K, the positive-intrinsic-negative photodetectors are demonstrated in InAsSb and InAs/InAsSb SL (75 periods) materials, exhibiting fifty-percent cutoff wavelengths of 3.8 μm and 5.1 μm, respectively.
Received: 04 July 2016      Published: 29 December 2016
PACS:  81.05.Ea (III-V semiconductors)  
  81.15.Hi (Molecular, atomic, ion, and chemical beam epitaxy)  
Fund: Supported by the National Natural Science Foundation of China under Grant Nos 11474248, 61176127, 61006085, 61274013 and 61306013, the Key Program for International S&T Cooperation Projects of China under Grant No 2011DFA62380, and the Ph.D. Programs Foundation of the Ministry of Education of China under Grant No 20105303120002.
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/33/12/128101       OR      https://cpl.iphy.ac.cn/Y2016/V33/I12/128101
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Yang Ren
Rui-Ting Hao
Si-Jia Liu
Jie Guo
Guo-Wei Wang
Ying-Qiang Xu
Zhi-Chuan Niu
[1]Grein C H, Young P M and Ehrenreich H 1992 Appl. Phys. Lett. 61 2905
[2]Youngdale E R, Meyer J R, Hoffman C A, Bartoli F J, Grein C H, Young P M, Ehrenreich H, Miles R H and Chow D H 1994 Appl. Phys. Lett. 64 3160
[3]Grein C H, Garland J and Flatte M E 2009 J. Electron. Mater. 38 1800
[4]Rhiger D R 2011 J. Electron. Mater. 40 1815
[5]Donetsky D, Svensson S P, Vorobjev L E and Belenky G 2009 Appl. Phys. Lett. 95 212104
[6]Svensson S P, Donetsky D, Wang D, Hier H, Crowne F J and Belenky G 2011 J. Cryst. Growth 334 103
[7]Steenbergen E H, Connelly B C, Metcalfe G D, Shen H, Wraback M, Lubyshev D, Qiu Y, Fastenau J M, Liu A W K, Elhamri S, Cellek O O and Zhang H Y 2011 Appl. Phys. Lett. 99 251110
[8]Lackner D, Steger M, Thewalt M L W, Pitts O J, Cherng Y T, Watkins S P, Plis E and Krishna S 2012 J. Appl. Phys. 111 034507
[9]Ciesla C M, Murdin B N, Pidgeon C R, Stradling R A, Phillips C C, Livingstone M, Galbraith I, Jaroszynski D A, Langerak C J G M, Tang P J P and Pullin M J 1996 J. Appl. Phys. 80 2994
[10]Tran D, Sigel Jr G H and Bendow B 1984 J. Lightwave Technol. 2 566
[11]Schneider H, Maier T, Fleissner J, Walther M, Koidl P, Weimann G, Cabanski W, Finck M, Menger P, Rode W and Ziegler J 2005 Infrared Phys. Technol. 47 53
[12]Rogalski A 2011 Infrared Phys. Technol. 54 136
[13]Gautam N, Naydenkov M, Myers S, Barve A V, Plis E, Rotter T, Dawson L R and Krishna S 2011 Appl. Phys. Lett. 98 121106
[14]Khoshakhlagh A, Rodriguez J B, Plis E, Bishop G D, Sharma Y D, Kim H S, Dawson L R and Krishna S 2007 Appl. Phys. Lett. 91 263504
[15]Plis E, Naydenkov M, Myers S, Klein B, Gautam N, Krishna S S, Smith E P, Johnson S and Krishna S 2013 Infrared Phys. Technol. 59 28
[16]Refaat T F, Abedin M N, Bhat I B and Xiao Y 2005 Opt. Eng. 44 120501
[17]Tsang W T, Chiu T H, Kisker D W and Ditzenberger J A 1985 Appl. Phys. Lett. 46 283
[18]Nguyen B M 2010 Dissertation Abstracts Int. 72-02 391
[19]Mohammedy F M and Deen M J 2009 J. Mater. Sci.: Mater. Electron. 20 1039
[20]Chang C A, Ludeke R, Chang L L and Esaki L 1977 Appl. Phys. Lett. 31 759
[21]Lee G S, Lo Y, Lin Y F, Bedair S M and Laidig W D 1985 Appl. Phys. Lett. 47 1219
[22]Neuberger M 1971 Handbook of Electronic Materials: 3-5 Semiconducting Compounds (New York: IFI/Plenum Data Co.)
[23]Wei Y, Gin A, Razeghi M and Brown G J 2002 Appl. Phys. Lett. 80 3262
[24]Chiu T H, Tsang W T, Ditzenberger J A, Chu S N G and Van der Ziel J P 1986 J. Appl. Phys. 60 205
[25]Rodriguez J B, Christol P, Cerutti L, Chevrier F and Joullié A 2005 J. Cryst. Growth 274 6
[26]Schuler-Sandy T, Myers S, Klein B, Gautam N, Ahirwar P, Tian Z B, Rotter T, Balakrishnan G, Plis E and Krishna S 2012 Appl. Phys. Lett. 101 071111
Related articles from Frontiers Journals
[1] Dong Pan, Huading Song, Shan Zhang, Lei Liu, Lianjun Wen, Dunyuan Liao, Ran Zhuo, Zhichuan Wang, Zitong Zhang, Shuai Yang, Jianghua Ying, Wentao Miao, Runan Shang, Hao Zhang, and Jianhua Zhao. In Situ Epitaxy of Pure Phase Ultra-Thin InAs-Al Nanowires for Quantum Devices[J]. Chin. Phys. Lett., 2022, 39(5): 128101
[2] Ding-Ming Huang, Jie-Yin Zhang, Jian-Huan Wang, Wen-Qi Wei, Zi-Hao Wang, Ting Wang, and Jian-Jun Zhang. Bufferless Epitaxial Growth of GaAs on Step-Free Ge (001) Mesa[J]. Chin. Phys. Lett., 2021, 38(6): 128101
[3] Yang Jiang, Ze-Yu Wan, Guang-Nan Zhou, Meng-Ya Fan, Gai-Ying Yang, R. Sokolovskij, Guang-Rui Xia, Qing Wang, Hong-Yu Yu. A Novel Oxygen-Based Digital Etching Technique for p-GaN/AlGaN Structures without Etch-Stop Layers *[J]. Chin. Phys. Lett., 0, (): 128101
[4] Yang Jiang, Ze-Yu Wan, Guang-Nan Zhou, Meng-Ya Fan, Gai-Ying Yang, R. Sokolovskij, Guang-Rui Xia, Qing Wang, Hong-Yu Yu. A Novel Oxygen-Based Digital Etching Technique for p-GaN/AlGaN Structures without Etch-Stop Layers[J]. Chin. Phys. Lett., 2020, 37(6): 128101
[5] Meng-Han Liu, Peng Chen, Zi-Li Xie, Xiang-Qian Xiu, Dun-Jun Chen, Bin Liu, Ping Han, Yi Shi, Rong Zhang, You-Dou Zheng, Kai Cheng, Li-Yang Zhang. Approach to Single-Mode Dominated Resonant Emission in GaN-Based Square Microdisks on Si[J]. Chin. Phys. Lett., 2020, 37(5): 128101
[6] Shen Yan, Xiao-Tao Hu, Jun-Hui Die, Cai-Wei Wang, Wei Hu, Wen-Liang Wang, Zi-Guang Ma, Zhen Deng, Chun-Hua Du, Lu Wang, Hai-Qiang Jia, Wen-Xin Wang, Yang Jiang, Guoqiang Li, Hong Chen. Surface Morphology Improvement of Non-Polar a-Plane GaN Using a Low-Temperature GaN Insertion Layer[J]. Chin. Phys. Lett., 2020, 37(3): 128101
[7] Jia-Ming Zeng, Xiao-Lan Wang, Chun-Lan Mo, Chang-Da Zheng, Jian-Li Zhang, Shuan Pan, Feng-Yi Jiang. Effect of Barrier Temperature on Photoelectric Properties of GaN-Based Yellow LEDs[J]. Chin. Phys. Lett., 2020, 37(3): 128101
[8] Shu-Zhe Mei, Quan Wang, Mei-Lan Hao, Jian-Kai Xu, Hong-Ling Xiao, Chun Feng, Li-Juan Jiang, Xiao-Liang Wang, Feng-Qi Liu, Xian-Gang Xu, Zhan-Guo Wang. Flow Field and Temperature Field in GaN-MOCVD Reactor Based on Computational Fluid Dynamics Modeling[J]. Chin. Phys. Lett., 2018, 35(9): 128101
[9] Bing-zhen Chen, Yang Zhang, Qing Wang, Zhi-yong Wang. Photoelectric Property Improvement of 1.0-eV GaInNAs and Applications in Lattice-Matched Five-Junction Solar Cells[J]. Chin. Phys. Lett., 2018, 35(7): 128101
[10] Chang Wang, Wenwu Pan, Konstantin Kolokolov, Shumin Wang. Band Structure and Optical Gain of InGaAs/GaAsBi Type-II Quantum Wells Modeled by the $k\cdot p$ Model[J]. Chin. Phys. Lett., 2018, 35(5): 128101
[11] De-Sheng Zhao, Ran Liu, Kai Fu, Guo-Hao Yu, Yong Cai, Hong-Juan Huang, Yi-Qun Wang, Run-Guang Sun, Bao-Shun Zhang. An Al$_{0.25}$Ga$_{0.75}$N/GaN Lateral Field Emission Device with a Nano Void Channel[J]. Chin. Phys. Lett., 2018, 35(3): 128101
[12] Zhi-Yu Lin, Zhi-Bin Chen, Jin-Cheng Zhang, Sheng-Rui Xu, Teng Jiang, Jun Luo, Li-Xin Guo, Yue Hao. Polar Dependence of Threading Dislocation Density in GaN Films Grown by Metal-Organic Chemical Vapor Deposition[J]. Chin. Phys. Lett., 2018, 35(2): 128101
[13] Bo-Ting Liu, Ping Ma, Xi-Lin Li, Jun-Xi Wang, Jin-Min Li. Influence of Al Preflow Time on Surface Morphology and Quality of AlN and GaN on Si (111) Grown by MOCVD[J]. Chin. Phys. Lett., 2017, 34(5): 128101
[14] Bo-Ting Liu, Shi-Kuan Guo, Ping Ma, Jun-Xi Wang, Jin-Min Li. High-Quality and Strain-Relaxation GaN Epilayer Grown on SiC Substrates Using AlN Buffer and AlGaN Interlayer[J]. Chin. Phys. Lett., 2017, 34(4): 128101
[15] Hai-Long Yu, Hao-Yue Wu, Hai-Jun Zhu, Guo-Feng Song, Yun Xu. Molecular Beam Epitaxy of GaSb on GaAs Substrates with Compositionally Graded LT-GaAs$_{x}$Sb$_{1-x}$ Buffer Layers[J]. Chin. Phys. Lett., 2017, 34(1): 128101
Viewed
Full text


Abstract