CONDENSED MATTER: STRUCTURE, MECHANICAL AND THERMAL PROPERTIES |
|
|
|
|
Micro-Mechanism of Silicon-Based Waveguide Surface Smoothing in Hydrogen Annealing |
Qian-Qian Duan1,2, Xin-Yu Ren1,2, Ao-Qun Jian1,2, Hui Zhang1,2, Jian-Long Ji1,2, Qiang Zhang1,2, Wen-Dong Zhang1,2, Sheng-Bo Sang1,2** |
1Micro Nano System Research Center, College of Information Engineering, Taiyuan University of Technology, Taiyuan 030600 2Key Laboratory of Advanced Transducers and Intelligent Control System (Ministry of Education), Taiyuan University of Technology, Taiyuan 030600
|
|
Cite this article: |
Qian-Qian Duan, Xin-Yu Ren, Ao-Qun Jian et al 2016 Chin. Phys. Lett. 33 126801 |
|
|
Abstract The micro-mechanism of the silicon-based waveguide surface smoothing is investigated systematically to explore the effects of silicon-hydrogen bonds on high-temperature hydrogen annealing waveguides. The effect of silicon-hydrogen bonds on the surface migration movement of silicon atoms and the waveguide surface topography are revealed. The micro-migration from an upper state to a lower state of silicon atoms is driven by silicon-hydrogen bonding, which is the key to ameliorate the rough surface morphology of the silicon-based waveguide. The process of hydrogen annealing is experimentally validated based on the simulated parameters. The surface roughness declines from 1.523 nm to 0.461 nm.
|
|
Received: 20 August 2016
Published: 29 December 2016
|
|
PACS: |
68.35.Ct
|
(Interface structure and roughness)
|
|
68.35.Md
|
(Surface thermodynamics, surface energies)
|
|
68.47.Fg
|
(Semiconductor surfaces)
|
|
|
Fund: Supported by the National Natural Science Foundation of China under Grant Nos 51505324, 91123036, 61471255 and 61474079, the Specialized Research Fund for the Doctoral Program of Higher Education under Grant No 20131402110013, and the Foundation for Young Scholars of Shanxi Province under Grant No 2014021023-3. |
|
|
[1] | Hitoshi H, Hitoshi T, Masanori M et al 1995 J. Electrochem. Soc. 142 3092 | [2] | Wu J W, Luo F G and Gallep C D M 2008 Chin. Phys. Lett. 25 574 | [3] | Lee J W, Lee J Y, Kim S G et al 2000 J. Korean Phys. Soc. 37 1034 | [4] | Shimizu R, Kuribayashi H, Hiruta R et al 2008 J. Phys.: Conf. Ser. 100 012031 | [5] | Massoud H Z 1995 Microelectron. Eng. 28 109 | [6] | Sun J B, Tang X Y, Yang Z W, Shi Y and Zhao Y 2014 Chin. Phys. B 23 066103 | [7] | Takahashi J, Tsuchizawa T, Watanabe T et al 2004 J. Vac. Sci. Technol. B 22 2522 | [8] | Howlader M M R, Selvaganapathy P R, Deen M J et al 2011 IEEE J. Sel. Top. Quantum Electron. 17 689 | [9] | Hung S C, Liang E Z and Lin C F 2009 J. Lightwave Technol. 27 887 | [10] | Sato T, Mitsutake K, Mizushima I et al 2000 Jpn. J. Appl. Phys. 39 5033 | [11] | Hiruta R, Kuribayashi H, Shimizu S et al 2004 Appl. Surf. Sci. 237 63 | [12] | Ju Wook L, Jeongyong L, Sang-Gi K, et al 2000 J. Korean Phys. Soc. 37 1034 | [13] | Kuribayashi H, Gotoh M, Hiruta R et al 2006 Appl. Surf. Sci. 252 5275 | [14] | Zhang H, Li T, Jian A Q et al 2015 Opt. Eng. 54 125101 | [15] | Sang S B, Shi Q, Deng L L et al 2015 J. Mod. Opt. 62 272 | [16] | Bahramian A 2015 Surf. Interface Anal. 47 1 | [17] | Li J K and Tian X F 2010 Chin. Phys. Lett. 27 036501 | [18] | Mullins W W 1957 J. Appl. Phys. 28 333 | [19] | Lee M C M, Chiu W C, Yang T M et al 2010 IEEE J. Quantum Electron. 46 650 | [20] | Einstein A 1905 Ann. Phys. 322 549 | [21] | Ebeling W 2004 Condens. Matter Phys. 7 539 | [22] | Einstein A 1906 Ann. Phys. 324 289 | [23] | Ju Y Y, Zhang Q M, Gong Z Z et al 2013 Chin. Phys. B 22 083101 | [24] | Acosta-Alba P E, Kononchuk O, Gourdel C et al 2014 J. Appl. Phys. 115 134903 | [25] | Doi T, Ichikawa M and Hosoki S 1997 Phys. Rev. B 55 1864 | [26] | Sudoh K, Hiruta R and Kuribayashi H 2013 J. Appl. Phys. 114 183512 |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|