FUNDAMENTAL AREAS OF PHENOMENOLOGY(INCLUDING APPLICATIONS) |
|
|
|
|
A Videographic Study of Dynamic Phase Separation for Immiscible Solutions under Acoustic Levitation Condition |
Wei-Li Wang, Yu-Hao Wu, Xiao-Yu Lu, Bing-Bo Wei** |
Department of Applied Physics, Northwestern Polytechnical University, Xi'an 710072
|
|
Cite this article: |
Wei-Li Wang, Yu-Hao Wu, Xiao-Yu Lu et al 2016 Chin. Phys. Lett. 33 124303 |
|
|
Abstract The transparent aqueous solutions of succinonitrile (SCN) provide an effective model system to simulate the phase separation process of various advanced materials. Here we report a real-time and in-situ study of phase separation dynamics for the SCN-15%H$_{2}$O, SCN-48%H$_{2}$O and SCN-70%H$_{2}$O solutions implemented by high-speed CCD videography together with acoustic levitation technique. It is found that liquid phase separation induces an unsteady state of drop rotation under levitated conditions. The resultant centrifugal force plays the dominant role in the migration of secondary liquid globules. The most desirable homogeneously dispersive structures can only be derived from the earlier stage of phase separation, whereas three kinds of macrosegregation are always the finally stable structure patterns. The migration velocity of minor liquid phase displays the nonlinear feature owing to the variations of globule location and centrifugal force. The surface tensions and volume fractions of immiscible phases also show a conspicuous influence upon the evolution dynamics of separation morphology.
|
|
Received: 22 November 2016
Published: 29 December 2016
|
|
|
|
Fund: Supported by the National Natural Science Foundation of China under Grant Nos 51571163, 51371150, 51271150 and 51327901. |
|
|
[1] | Cros A, Mata R, Hestroffer K and Daudin B 2013 Appl. Phys. Lett. 102 143109 | [2] | Zhang X M, Wang W L and Wei B B 2010 Chin. Phys. Lett. 27 026401 | [3] | Zhang J T, Tang Y, Lee K, Ouyang M 2010 Science 327 1634 | [4] | Sasidharan M and Nakashima K 2014 Acc. Chem. Res. 47 157 | [5] | LoPresti C, Massignani M, Fernyhough C, Blanazs A et al 2011 ACS Nano 5 1775 | [6] | Hensle E M and Blum S A 2013 J. Am. Chem. Soc. 135 12324 | [7] | Pavlenko N, Kopp T and Mannhart 2013 Phys. Rev. B 88 201104 | [8] | Miyajima D, Araoka F, Takezoe H et al 2012 Science 336 209 | [9] | Wang W L, Wu Y H, Li L H et al 2016 Phys. Rev. E 93 032603 | [10] | Fattebert J L, Wickett M E, Turchi P E A 2014 Acta Mater. 62 89 | [11] | Wang W L, Li Z Q and Wei B 2011 Acta Mater. 59 5482 | [12] | Xie W J, Cao C D, Lü Y J and Wei B 2002 Phys. Rev. Lett. 89 104304 | [13] | Villermaux E, Bossa B 2009 Nat. Phys. 5 697 | [14] | Lü Y J, Xie W J and Wei B 2010 J. Appl. Phys. 107 014909 | [15] | Priego F, de Castro L 2006 TrAC Trends Anal. Chem. 25 856 | [16] | Sciortino F, Poole P H, Stanley H E and Havlin S 1990 Phys. Rev. Lett. 64 1686 | [17] | Shen C L, Xie W J, Yan Z L and Wei B B 2010 Phys. Lett. A 374 4045 | [18] | Natarajan R, Brown R A 1987 J. Fluid Mech. 183 95 | [19] | Marston P, Thiessen D B 2004 Ann. N. Y. Acad. Sci. 1027 414 | [20] | Lü Y J, Xie W J and Wei B B 2002 Chin. Phys. Lett. 19 1543 |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|