Chin. Phys. Lett.  2016, Vol. 33 Issue (12): 124206    DOI: 10.1088/0256-307X/33/12/124206
FUNDAMENTAL AREAS OF PHENOMENOLOGY(INCLUDING APPLICATIONS) |
Tight Focusing Properties of Radially Polarized Gaussian Beams with Pair of Vortices
C. A. P. Janet1, K. B. Rajesh2**, M. Udhayakumar2, Z. Jaroszewicz3, T. V. S. Pillai4
1Department of Physics, St. Xavier's Catholic College of Engineering, Nagercoil, India
2Department of Physics, Chikkanna Government Arts College, Tiruppur, India
3Department of Physical Optics, Institute of Applied Optics, Poland, and National Institute of Telecommunications, Warsaw, Poland
4Department of Physics, University College of Engineering, Nagercoil, India
Cite this article:   
C. A. P. Janet, K. B. Rajesh, M. Udhayakumar et al  2016 Chin. Phys. Lett. 33 124206
Download: PDF(774KB)   PDF(mobile)(KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract The tight focusing properties of a radially polarized Gaussian beam with a nested pair of vortices having a radial wave front distribution are investigated theoretically by the vector diffraction theory. The results show that the optical intensity in the focal region can be altered considerably by changing the location of the vortices nested in a radially polarized Gaussian beam. It is noted that focal evolution from one annular focal pattern to a highly confined focal spot in the transverse direction is observed corresponding to the change in the location of the optical vortices in the input plane. It is also observed that the generated focal hole or spot lead to a focal shift along the optical axis remarkably under proper radial phase modulation. Hence the proposed system may be applied to construct tunable optical traps for both high and low refractive index particles.
Received: 01 September 2016      Published: 29 December 2016
PACS:  42.25.Bs (Wave propagation, transmission and absorption)  
  42.25.Ja (Polarization)  
  42.79.Ag (Apertures, collimators)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/33/12/124206       OR      https://cpl.iphy.ac.cn/Y2016/V33/I12/124206
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
C. A. P. Janet
K. B. Rajesh
M. Udhayakumar
Z. Jaroszewicz
T. V. S. Pillai
[1]Basisitiy I V et al 1995 Opt. Commun. 119 604
[2]Palacios D M et al 2004 Phys. Rev. Lett. 92 143905
[3]Roux F S 2004 Opt. Commun. 242 45
[4]Lee W M, Yuan X C and Cheong W C 2004 Opt. Lett. 92 1796
[5]Gao X, Wang J, Gu H and Hu S 2009 Optik 120 201
[6]Ladavac K and Grier D G 2004 Opt. Express 12 1144
[7]Cojoc D, Garbinv V, Ferrari E, Businaro L Romamato F and Di Fabrizio E 2005 Micro Electron. Eng. 77 125
[8]Nye J F and Berry M V 1974 Proc. R. Soc. London Ser. A 336 165
[9]Heckenberg N R, Vaupel M, Malos J T and Weiss C O 1996 Phys. Rev. A 54 2369
[10]Brandao P A and Juliao C S 2011 Opt. Lett. 36 1563
[11]Roux F S 1995 J. Opt. Soc. Am. B 12 1215
[12]Freund I and Kessler D A 2001 Opt. Commun. 187 71
[13]Chen Z, Pu J X and Zhao D M 2011 Phys. Lett. A 375 2958
[14]Fang G J, Tian B and Pu J X 2012 Opt. Laser Technol. 44 441
[15]Dong X M, Gao X M, Chen J B and Zhuang S L 2012 Optik 123 2121
[16]Zhan Q and Leger J R 2002 Opt. Express 10 324
[17]Gao X, Wang J, Gu H and Xu W 2007 Optik 118 257
[18]Young worth K S and Brown T G 2000 Opt. Express 7 77
[19]Sato S and Kozawa Y 2009 J. Opt. Soc. Am. A 26 142
[20]Ashkin A, Dziedzic J M, Bjorkholm J E and Chu S 1986 Opt. Lett. 11 288
[21]Arlt J and Padgett M J 2000 Opt. Lett. 25 191
[22]Gao X M, Wang Q, Yun M J, Guo H M, Wang J and Zhuang S L 2011 Optik 122 2124
Related articles from Frontiers Journals
[1] Xin Tong  and Daomu Zhao. Propagation Characteristics of Exponential-Cosine Gaussian Vortex Beams[J]. Chin. Phys. Lett., 2021, 38(8): 124206
[2] Zhong-Hua Qian, Zi-Han Ding, Ming-Zhong Ai, Yong-Xiang Zheng, Jin-Ming Cui, Yun-Feng Huang, Chuan-Feng Li, and Guang-Can Guo. Bayesian Optimization for Wavefront Sensing and Error Correction[J]. Chin. Phys. Lett., 2021, 38(6): 124206
[3] Yan-Ning Liu, Xiao-Long Weng, Peng Zhang, Wen-Xin Li, Yu Gong, Li Zhang, Tian-Cheng Han, Pei-Heng Zhou, and Long-Jiang Deng. Ultra-Broadband Infrared Metamaterial Absorber for Passive Radiative Cooling[J]. Chin. Phys. Lett., 2021, 38(3): 124206
[4] Peng Chen, Xianglin Kong, Jianfei Han, Weihua Wang, Kui Han, Hongyu Ma, Lei Zhao, and Xiaopeng Shen. Wide-Angle Ultra-Broadband Metamaterial Absorber with Polarization-Insensitive Characteristics[J]. Chin. Phys. Lett., 2021, 38(2): 124206
[5] Xue-Chun Zhao, Lei Zhang, Rong Lin, Shu-Qin Lin, Xin-Lei Zhu, Yang-Jian Cai, and Jia-Yi Yu. Hermite Non-Uniformly Correlated Array Beams and Its Propagation Properties[J]. Chin. Phys. Lett., 2020, 37(12): 124206
[6] Han Zhang, Chen Ming, Ke Yang, Hao Zeng, Shengbai Zhang, and Yi-Yang Sun. Chalcogenide Perovskite YScS$_{3}$ as a Potential p-Type Transparent Conducting Material[J]. Chin. Phys. Lett., 2020, 37(9): 124206
[7] Xinghong Zhu, Pengfei Zhao, and Huanyang Chen. Multi-Core Conformal Lenses[J]. Chin. Phys. Lett., 2020, 37(8): 124206
[8] Fei Xiang, Lin Zhang, Tao Chen, Yuan-Hong Zhong, Jin Li. Transverse Propagation Characteristics and Coherent Effect of Gaussian Beams *[J]. Chin. Phys. Lett., 0, (): 124206
[9] Meng-Yao Yan , Bi-Jun Xu, Zhi-Chao Sun , Zhen-Dong Wu , Bai-Rui Wu . Terahertz Perfect Absorber Based on Asymmetric Open-Loop Cross-Dipole Structure[J]. Chin. Phys. Lett., 0, (): 124206
[10] Fei Xiang, Lin Zhang, Tao Chen, Yuan-Hong Zhong, Jin Li. Transverse Propagation Characteristics and Coherent Effect of Gaussian Beams[J]. Chin. Phys. Lett., 2020, 37(6): 124206
[11] Meng-Yao Yan , Bi-Jun Xu, Zhi-Chao Sun , Zhen-Dong Wu , Bai-Rui Wu . Terahertz Perfect Absorber Based on Asymmetric Open-Loop Cross-Dipole Structure[J]. Chin. Phys. Lett., 2020, 37(6): 124206
[12] Shuai-Meng Wang, Xiao-Hong Sun, De-Li Chen, Fan Wu. GaP-Based High-Efficiency Elliptical Cylinder Metasurface in Visible Light[J]. Chin. Phys. Lett., 2020, 37(5): 124206
[13] Xuannan Wu, Guanwen Yuan, Rui Zhu, Jicheng Wang, Fuhua Gao, Feiliang Chen, Yidong Hou. Giant Broadband One Way Transmission Based on Directional Mie Scattering and Asymmetric Grating Diffraction Effects[J]. Chin. Phys. Lett., 2020, 37(4): 124206
[14] Zong-Cheng Xu, Liang Wu, Ya-Ting Zhang, De-Gang Xu, Jian-Quan Yao. Photoexcited Blueshift and Redshift Switchable Metamaterial Absorber at Terahertz Frequencies[J]. Chin. Phys. Lett., 2019, 36(12): 124206
[15] Si-Bo Hao, Zi-Li Zhang, Yuan-Yuan Ma, Meng-Yu Chen, Yang Liu, Hao-Chong Huang, Zhi-Yuan Zheng. Terahertz Lens Fabricated by Natural Dolomite[J]. Chin. Phys. Lett., 2019, 36(12): 124206
Viewed
Full text


Abstract