Chin. Phys. Lett.  2016, Vol. 33 Issue (12): 120302    DOI: 10.1088/0256-307X/33/12/120302
GENERAL |
Decoy State Quantum Key Distribution via Beam-Wandering Modeled Atmosphere Channel
Sheng-Li Zhang1,2**, Chen-Hui Jin1, Jian-Sheng Guo1, Jian-Hong Shi1, Xu-Bo Zou2, Guang-Can Guo2
1The PLA Information Engineering University, Zhengzhou 450004
2Key Laboratory of Quantum information, University of Science and Technology of China, Hefei 230026
Cite this article:   
Sheng-Li Zhang, Chen-Hui Jin, Jian-Sheng Guo et al  2016 Chin. Phys. Lett. 33 120302
Download: PDF(576KB)   PDF(mobile)(KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract We investigate the decoy state quantum key distribution via the atmosphere channels. We consider the efficient decoy state method with one-signal state and two-decoy states. Our results show that the decoy state method works even in the channels with fluctuating transmittance. Nevertheless, the key generation rate will be dramatically decreased by atmosphere turbulence, which sheds more light on the characterization of atmosphere turbulence in realistic free-space based quantum key distributions.
Received: 22 August 2016      Published: 29 December 2016
PACS:  03.67.Hk (Quantum communication)  
  42.50.Ex (Optical implementations of quantum information processing and transfer)  
  03.67.Hk (Quantum communication)  
  03.67.Mn (Entanglement measures, witnesses, and other characterizations)  
Fund: Supported by the National Natural Science Foundation of China under Grant Nos 11574400, U1304613, 11204197, 11204379 and 11074244, the National Basic Research Program of China under Grant No 2011CBA00200, and the Doctor Foundation of the Ministry of Education of China under Grant No 20113402110059.
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/33/12/120302       OR      https://cpl.iphy.ac.cn/Y2016/V33/I12/120302
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Sheng-Li Zhang
Chen-Hui Jin
Jian-Sheng Guo
Jian-Hong Shi
Xu-Bo Zou
Guang-Can Guo
[1]Bennett C and Brassard G 1984 IEEE International Conference on Computers, Systems and Signal Processing p 175
[2]Bennett C et al 1992 J. Cryptology 5 3
[3]Mo X F et al 2005 Opt. Lett. 30 2632
[4]Liu Y et al 2010 Opt. Express 18 8587
[5]Yin H L et al 2016 Phys. Rev. Lett. 117 190501
[6]Dequal D et al 2016 Phys. Rev. A 93 010301
[7]Rivest R L et al 1978 Commun. ACM 21 120
[8]Gisin N et al 2002 Rev. Mod. Phys. 74 145
[9]Wooters W K and Zurek W H 1982 Nature 299 802
[10]Lodahl P et al 2015 Rev. Mod. Phys. 87 347
[11]Lütkenhaus N 2000 Phys. Rev. A 61 052304
[12]Gottesman D et al 2004 Quantum Inf. Comput. 4 325
[13]Brassard G and Salvail L 1994 Eurocrypt'93 Workshop Theory Application Cryptographic Tech. Adv. Cryptology. 765 410
[14]Wang X B 2005 Phys. Rev. Lett. 94 230503
[15]Lo H K et al 2005 Phys. Rev. Lett. 94 230504
[16]Hwang W Y 2003 Phys. Rev. Lett. 91 057901
[17]Fung C H F et al 2006 Phys. Rev. A 73 012337
[18]Zhang S L et al 2009 Chin. Sci. Bull. 54 1863
[19]Curty M et al 2009 Phys. Rev. A 79 032335
[20]Vasylyev D Y et al 2012 Phys. Rev. Lett. 108 220501
[21]Diament P and Teich M C 1970 J. Opt. Soc. Am. 60 1489
[22]Pe?ina J 1972 Czech. J. Phys. 22 1075
[23]Pe?ina J et al 1973 Phys. Rev. A 7 1732
[24]Ishimaru A 1978 The Beam Wave Case and Remote Sensing (New York: Springer-Verlag) p 129
[25]http://www.idquantique.com/photon-counting/photon-counting-modules/id120/
[26]Kurtsiefer C et al 2002 Nature 419 450
[27]Semenov A A et al 2012 Phys. Rev. A 85 013826
[28]Kasai K et al 2010 Inf. Reconciliation For QKD Rate-compatible Non-binary LDPC Codes. (Int. Symp. Inf. Theory Its Appl.) p 922
[29]Lo H K et al 2012 Phys. Rev. Lett. 108 130503
Related articles from Frontiers Journals
[1] Jian Li, Yang Zhou, and Qin Wang. Demonstration of Einstein–Podolsky–Rosen Steering with Multiple Observers via Sequential Measurements[J]. Chin. Phys. Lett., 2022, 39(11): 120302
[2] Yanxin Han, Zhongqi Sun, Tianqi Dou, Jipeng Wang, Zhenhua Li, Yuqing Huang, Pengyun Li, and Haiqiang Ma. Twin-Field Quantum Key Distribution Protocol Based on Wavelength-Division-Multiplexing Technology[J]. Chin. Phys. Lett., 2022, 39(7): 120302
[3] Jian Li, Jia-Li Zhu, Jiang Gao, Zhi-Guang Pang, and Qin Wang. Semi-Measurement-Device-Independent Quantum State Tomography[J]. Chin. Phys. Lett., 2022, 39(7): 120302
[4] Yanbo Lou, Xiaoyin Xu, Shengshuai Liu, and Jietai Jing. Low-Noise Intensity Amplification of a Bright Entangled Beam[J]. Chin. Phys. Lett., 2021, 38(9): 120302
[5] Keyu Su, Yunfei Wang, Shanchao Zhang, Zhuoping Kong, Yi Zhong, Jianfeng Li, Hui Yan, and Shi-Liang Zhu. Synchronization and Phase Shaping of Single Photons with High-Efficiency Quantum Memory[J]. Chin. Phys. Lett., 2021, 38(9): 120302
[6] Huan-Yu Liu, Tai-Ping Sun, Yu-Chun Wu, and Guo-Ping Guo. Variational Quantum Algorithms for the Steady States of Open Quantum Systems[J]. Chin. Phys. Lett., 2021, 38(8): 120302
[7] Luyu Huang , Yichen Zhang, and Song Yu . Continuous-Variable Measurement-Device-Independent Quantum Key Distribution with One-Time Shot-Noise Unit Calibration[J]. Chin. Phys. Lett., 2021, 38(4): 120302
[8] A-Long Zhou , Dong Wang, Xiao-Gang Fan , Fei Ming , and Liu Ye. Mutual Restriction between Concurrence and Intrinsic Concurrence for Arbitrary Two-Qubit States[J]. Chin. Phys. Lett., 2020, 37(11): 120302
[9] Wei-Min Shang, Jie Zhou, Hui-Xian Meng, Jing-Ling Chen. Quantum Deletion of Copies of Two Non-orthogonal Quantum States via Weak Measurement[J]. Chin. Phys. Lett., 2020, 37(5): 120302
[10] Yu Mao, Qi Liu, Ying Guo, Hang Zhang, Jian Zhou. Four-State Modulation in Middle of a Quantum Channel for Continuous-Variable Quantum Key Distribution Protocol with Noiseless Linear Amplifier[J]. Chin. Phys. Lett., 2019, 36(10): 120302
[11] Sheng-Li Zhang, Song Yang. Methods for Derivation of Density Matrix of Arbitrary Multi-Mode Gaussian States from Its Phase Space Representation[J]. Chin. Phys. Lett., 2019, 36(9): 120302
[12] Guang-Zhao Tang, Shi-Hai Sun, Chun-Yan Li. Experimental Point-to-Multipoint Plug-and-Play Measurement-Device-Independent Quantum Key Distribution Network[J]. Chin. Phys. Lett., 2019, 36(7): 120302
[13] Ya-Hui Gan, Yang Wang, Wan-Su Bao, Ru-Shi He, Chun Zhou, Mu-Sheng Jiang. Finite-Key Analysis for a Practical High-Dimensional Quantum Key Distribution System Based on Time-Phase States[J]. Chin. Phys. Lett., 2019, 36(4): 120302
[14] Min Xiao, Di-Fang Zhang. Practical Quantum Private Query with Classical Participants[J]. Chin. Phys. Lett., 2019, 36(3): 120302
[15] Cai-Lang Xie, Ying Guo, Yi-Jun Wang, Duan Huang, Ling Zhang. Security Simulation of Continuous-Variable Quantum Key Distribution over Air-to-Water Channel Using Monte Carlo Method[J]. Chin. Phys. Lett., 2018, 35(9): 120302
Viewed
Full text


Abstract