Chin. Phys. Lett.  2016, Vol. 33 Issue (11): 117401    DOI: 10.1088/0256-307X/33/11/117401
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Enhancement of Resonant Activation by Constant Bias Current for Superconducting Junction
Jing-Hui Li**
Faculty of Science, Ningbo University, Ningbo 315211
Cite this article:   
Jing-Hui Li 2016 Chin. Phys. Lett. 33 117401
Download: PDF(421KB)   PDF(mobile)(KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract We consider a superconducting (Josephson) junction driven by the thermal noise with an ac drive current and a dc constant bias current in the overdamped case and in the underdamped case, respectively, and investigate the effect of the constant bias current on the evolution of the net voltage versus the driving frequency. It is shown that, with some suitably selected values of the system's parameters, suitably increasing the absolute value of the constant bias current can lead to the enhancement of resonant activation of the net voltage versus the driving frequency. This result can benefit the investigation for the Josephson junction subjected to the constant bias current (or voltage).
Received: 27 June 2016      Published: 28 November 2016
PACS:  74.40.De (Noise and chaos)  
  05.40.Ca (Noise)  
  74.50.+r (Tunneling phenomena; Josephson effects)  
Fund: Supported by the K. C. Wong Magna Fund in Ningbo University of China.
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/33/11/117401       OR      https://cpl.iphy.ac.cn/Y2016/V33/I11/117401
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Jing-Hui Li
[1]Josephson B D 1962 Phys. Lett. 1 251
[2]Picot T et al 2008 Phys. Rev. B 78 132508
[3]Lee J C et al 2007 Phys. Rev. B 75 144505
[4]Komissinskiy P et al 2008 Phys. Rev. B 78 024501
[5]Millonas M M and Chialvo D R 1996 Phys. Rev. E 53 2239
[6]Li J H and Huang Z Q 1998 Phys. Rev. E 58 139
[7]Berdichevsky V and Gitterman M 1997 Phys. Rev. E 56 6340
[8]Li J H et al 1998 Phys. Rev. E 57 3917
[9]Zapata I et al 1996 Phys. Rev. Lett. 77 2292
[10]Li J H 2003 Phys. Rev. E 67 061110
[11]Li J H 2006 Phys. Rev. E 74 011114
[12]Sterck A et al 2002 Appl. Phys. A: Mater. Sci. Process. 75 253
[13]Sterck A et al 2005 Phys. Rev. Lett. 95 177006
[14]Li J H 2007 Phys. Rev. E 76 031120
[15]Li J H 2010 J. Phys.: Condens. Matter 22 115702
[16]Valenti D et al 2014 Phys. Rev. B 89 214510
[17]Li J H 2014 Commun. Theor. Phys. 61 710
[18]Li J H 2014 Chin. Phys. Lett. 31 060505
[19]Gardiner C W 1983 Handbook of Stochastic Method for Physics, Chemistry and Natural Science (Berlin: Springer-Verlag)
[20]Ramirez-Piscina L et al 1993 Phys. Rev. B 48 125
[21]Honeycutt R L 1992 Phys. Rev. A 45 600
[22]Doering C R and Gadoua J C 1992 Phys. Rev. Lett. 69 2318
Yu Y and Han S 2003 Phys. Rev. Lett. 91 127003
Li J H et al 1999 Phys. Rev. E 60 6443
[23]Sun G et al 2007 Phys. Rev. E 75 021107
Mankin R et al 2008 Phys. Rev. E 77 051113
[24]Li J H 2014 Chin. Phys. Lett. 31 060504
[25]Parker Thomas S et al 1989 Practical Numerical Algorithms for Chaotic Systems (Berlin: Springer-Verlag)
[26]Li J H et al 2004 Phys. Rev. Lett. 93 014102
Related articles from Frontiers Journals
[1] Sheng-Li Zhu, Lu Gan. Specific Emitter Identification Based on Visibility Graph Entropy[J]. Chin. Phys. Lett., 2018, 35(3): 117401
[2] Sheng-Li Zhu, Lu Gan. Chaos Identification Based on Component Reordering and Visibility Graph[J]. Chin. Phys. Lett., 2017, 34(5): 117401
Viewed
Full text


Abstract