Chin. Phys. Lett.  2016, Vol. 33 Issue (11): 117201    DOI: 10.1088/0256-307X/33/11/117201
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Photon-Assisted Heat Generation by Electric Current in a Quantum Dot Attached to Ferromagnetic Leads
Feng Chi1**, Lian-Liang Sun2
1School of Electronic and Information Engineering, University of Electronic Science and Technology of China, Zhongshan Institute, Zhongshan 528400
2College of Science, North China University of Technology, Beijing 100041
Cite this article:   
Feng Chi, Lian-Liang Sun 2016 Chin. Phys. Lett. 33 117201
Download: PDF(806KB)   PDF(mobile)(KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Heat generated by electric current in a quantum dot device contacting a phonon bath is studied using the non-equilibrium Green function technique. Spin-polarized current is generated owing to the Zeeman splitting of the dot level. The current's strength and the spin polarization are further manipulated by changing the frequency of an applied photon field and the ferromagnetism on the leads. We find that the associated heat by this spin-polarized current emerges even if the bias voltage is smaller than the phonon energy quanta and obvious negative differential of the heat generation develops when the photon frequency exceeds that of the phonon. It is also found that both the strength and the resonant peaks' position of the heat generation can be tuned by changing the value and the arrangement configurations of the magnetic moments of the two leads, and then provides an effective method to generate large spin-polarized current with weak heat. Such a result may be useful in designing low energy consumption spintronic devices.
Received: 10 July 2016      Published: 28 November 2016
PACS:  72.25.-b (Spin polarized transport)  
  78.20.nb (Photothermal effects)  
  44.10.+i (Heat conduction)  
Fund: Supported by the National Natural Science Foundation of China under Grant No 61274101.
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/33/11/117201       OR      https://cpl.iphy.ac.cn/Y2016/V33/I11/117201
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Feng Chi
Lian-Liang Sun
[1]Prinz G A 1998 Science 282 1660
[2]Wolf S A, Awschalom D D, Buhrman R A, Daughton J M, von Molné r S, Roukes M L, Chtchelkanova A Y and Treger D M 2001 Science 294 1488
[3]? uti? I, Fabian J and Das Sarma S 2004 Rev. Mod. Phys. 76 323
[4]Hanson R, Kouwenhoven L P, Petta J R, Tarucha S and Vandersypen L M K 2007 Rev. Mod. Phys. 79 1217
[5]Kato Y, Myers R C, Gossard A C and Awschalom D D 2004 Science 306 1910
[6]Wunderlich J, Kaestner B, Sinova J and Jungwirth T 2005 Phys. Rev. Lett. 94 047204
[7]Uchida K, Takahashi S, Harii K, Ieda J, Koshibae W, Ando K, Maekawa S and Saitoh E 2008 Nature 455 778
[8]Jaworski C M, Yang J, Mack S, Awschalom D D, Heremans J P and Myers R C 2010 Nat. Mater. 9 898
[9]Uchida K, Xiao J, Adachi H, Ohe J, Takahashi S, Ieda J, Ota T, Kajiwara Y, Umezawa H, Kawai H, Bauer G E W, Maekawa S and Saitoh E 2010 Nat. Mater. 9 894
[10]Mucciolo E R, Chamon C and Marcus C M 2002 Phys. Rev. Lett. 89 146802
[11]Cota E, Aguado R and Platero G 2005 Phys. Rev. Lett. 94 107202
Sanchez R, Cota E, Aguado R and Platero G 2006 Phys. Rev. B 74 035326
[12]Souza F M 2007 Phys. Rev. B 76 205315
[13]Press D, Ladd T D, Zhang B Y and Yamamoto Y 2008 Nature 456 218
[14]Xu X D, Wu Y W, Sun B, Huang Q, Cheng J, Steel D G, Bracker A S, Gammon D, Emary C and Sham L J 2007 Phys. Rev. Lett. 99 097401
[15]Ebbens A, Krizhanovskii D N, Tartakovskii A I, Pulizzi F, Wright T, Savelyev A V, Skolnick M S and Hopkinson M 2005 Phys. Rev. B 72 073307
[16]Koppens F H L, Buizerk C, Tielrooij K J, Vink I T, Nowack K C, Meunier T, Kouwenhoven L P and Vandersypen L M K 2006 Nature 442 766
[17]Clark S M, Fu K M C, Ladd T D and Yamamoto Y 2007 Phys. Rev. Lett. 99 040501
[18]Li N B, Ren J, Wang L, Zhang G, H? nggi P and Li B W 2012 Rev. Mod. Phys. 84 1045
[19]Schwab K, Henriksen E A, Worlock J M and Roules M L 2000 Nature 404 974
[20]Balandin A 2011 Nat. Mater. 10 569
[21]Huang Z, Xu B Q, Chen Y C, Di Ventra M and Tao N J 2006 Nano Lett. 6 1240
Huang Z, Chen F, D'Agosta R, Bennett P A, Di Ventra M and Tao N J 2007 Nat. Nanotechnol. 2 698
[22]Oron-Carl M and Krupke R 2008 Phys. Rev. Lett. 100 127401
[23]Rego L G C and Kirczenow G 1998 Phys. Rev. Lett. 81 232
[24]Sun Q F and Xie X C 2007 Phys. Rev. B 75 155306
[25]Liu J, Song J T, Sun Q F and Xie X C 2009 Phys. Rev. B 79 161309(R)
[26]Wu B H and Cao J C 2009 J. Phys.: Condens. Matter 21 245301
[27]Lü J T and Wang J S 2007 Phys. Rev. B 76 165418
Wang J S, Wang J and Lü J T 2008 Eur. Phys. J. B 62 381
[28]Lazzeri M, Piscanec S, Mauri F, Ferrari A C and Robertson J 2005 Phys. Rev. Lett. 95 236802
[29]Pei W, Xie X C and Sun Q F 2012 J. Phys.: Condens. Matter 24 415302
Pei W and Sun Q F 2012 J. Appl. Phys. 112 124306
[30]Zhou L L 2011 Chin. Phys. Lett. 28 128504
Zhou L L, Li S S and Zeng Z Y 2009 Chin. Phys. Lett. 26 037304
[31]Zhou L L, Li S S, Wei J N and Wang S Q 2011 Phys. Rev. B 83 195303
[32]Deng Y X, Yan X H, Xiao Y and Tang N S 2010 Phys. Lett. A 374 4375
[33]Wang Q, Xie H, Jiao H and Nie Y H 2013 Europhys. Lett. 101 47008
[34]Chen Q and Zhang Y M 2010 Commun. Theor. Phys. 54 171
Chen Q and Deng Y H 2011 Commun. Theor. Phys. 56 517
Chen Q, Xu M C and Wang Z Y 2013 Physica E 48 106
Chen Q and Zhao H K 2008 Eur. Phys. J. B 64 237
[35]Chen Q, Tang L M, Chen K Q and Zhao H K 2013 J. Appl. Phys. 114 084301
Chen Q, Zhao L L, Wang Z Y and Xie Z X 2014 J. Low Temp. Phys. 174 311
[36]Chi F, Zheng J, Liu Y S and Guo Y 2012 Appl. Phys. Lett. 100 233106
[37]Chi F, Sun L L and Guo Y 2014 J. Appl. Phys. 116 164305
[38]Chi F, Sun L L, Zheng J and Guo Y 2015 J. Magn. Magn. Mater. 384 52
[39]Guo Y, Sun L L and Chi F 2014 Commun. Theor. Phys. 62 423
[40]Souza F M, Carrara T L and Vernek E 2011 Phys. Rev. B 84 115322
[41]Chen Z Z, Lü R and Zhu B F 2005 Phys. Rev. B 71 165324
[42]Wang R Q, Zhou Y Q, Wang B G and Xing D Y 2007 Phys. Rev. B 75 045318
[43]Dong B, Cui H L and Lei X L 2004 Phys. Rev. B 69 205315
[44]Wang J, Lu Xin and Wu C Q 2007 J. Phys.: Condens. Matter 19 496216
[45]Liu Y S, Chen H, Fan X H and Yang X F 2006 Phys. Rev. B 73 115310
Related articles from Frontiers Journals
[1] Haiyang Pan, Xiaobo Wang, Qiaoming Wang, Xiaohua Wu, Chang Liu, Nian Lin, and Yue Zhao. Proximity Effect of Epitaxial Iron Phthalocyanine Molecules on High-Quality Graphene Devices[J]. Chin. Phys. Lett., 2021, 38(8): 117201
[2] Weihao Cao, Matisse Wei-Yuan Tu, Jiang Xiao, and Wang Yao. Giant Spin Transfer Torque in Atomically Thin Magnetic Bilayers[J]. Chin. Phys. Lett., 2020, 37(10): 117201
[3] Chao Yang, Zheng-Chuan Wang, and Gang Su. Magnetization Reversal of Single-Molecular Magnets by a Spin-Polarized Current[J]. Chin. Phys. Lett., 2020, 37(8): 117201
[4] He-Nan Fang, Yuan-Yuan Zhong, Ming-Wen Xiao, Xuan Zang, Zhi-Kuo Tao. Effect of Lattice Distortion on the Magnetic Tunnel Junctions Consisting of Periodic Grating Barrier and Half-Metallic Electrodes[J]. Chin. Phys. Lett., 2020, 37(3): 117201
[5] Xiao-Xue Zhang, Yao-Hui Zhu, Pei-Song He, Bao-He Li. Mechanisms of Spin-Dependent Heat Generation in Spin Valves[J]. Chin. Phys. Lett., 2017, 34(6): 117201
[6] NIU Peng-Bin, SHI Yun-Long, SUN Zhu, NIE Yi-Hang, LUO Hong-Gang. Phonon-Assisted Spin Current in Single Molecular Magnet Junctions[J]. Chin. Phys. Lett., 2015, 32(11): 117201
[7] ZHANG Xiao-Wei, ZHAO Hua, SANG Tian, LIU Xiao-Chun, CAI Tuo. Spin-Dependent Electron Transport in an Armchair Graphene Nanoribbon Subject to Charge and Spin Biases [J]. Chin. Phys. Lett., 2013, 30(1): 117201
[8] A. John Peter, Chang Woo Lee. Photo-Induced Electron Spin Polarization in a Narrow Band Gap Semiconductor Nanostructure[J]. Chin. Phys. Lett., 2012, 29(11): 117201
[9] LI Bo-Xin, ZHENG Jun, CHI Feng. Spin-Selective Transport of Electron in a Quantum Dot under Magnetic Field[J]. Chin. Phys. Lett., 2012, 29(10): 117201
[10] FANG Dong-Kai, WU Shao-Quan, ZOU Cheng-Yi, ZHAO Guo-Ping. Effect of Electronic Correlations on Magnetotransport through a Parallel Double Quantum Dot[J]. Chin. Phys. Lett., 2012, 29(3): 117201
[11] LI Jin-Liang, LI Yu-Xian. Spin Current Through Triple Quantum Dot in the Presence of Rashba Spin-Orbit Interaction[J]. Chin. Phys. Lett., 2010, 27(5): 117201
[12] Eerdunchaolu, XIN Wei, ZHAO Yu-Wei. Influence of Rashba SOI and Polaronic Effects on the Ground-State Energy of Electrons in Semiconductor Quantum Rings[J]. Chin. Phys. Lett., 2010, 27(1): 117201
[13] CHI Feng, YUAN Xi-Qiu. Triple Quantum Dot Molecule as a Spin-Splitter[J]. Chin. Phys. Lett., 2009, 26(9): 117201
[14] TANG Xiao-Li, ZHANG Huai-Wu, SU Hua, JING Yu-Lan. Large Magnetoresistance Based on Double Spin Filter Tunnel Barriers[J]. Chin. Phys. Lett., 2008, 25(10): 117201
[15] LI Yu-Xian. Spin Polarization and Andreev Conductance through a Diluted Magnetic Semiconductor Quantum Wire with Spin--Orbit Interaction[J]. Chin. Phys. Lett., 2008, 25(10): 117201
Viewed
Full text


Abstract