Chin. Phys. Lett.  2016, Vol. 33 Issue (11): 116401    DOI: 10.1088/0256-307X/33/11/116401
CONDENSED MATTER: STRUCTURE, MECHANICAL AND THERMAL PROPERTIES |
Determination of the Minimum Wave Speed for the Modelling of Ventilated Cavitation
Ting Chen, Yu-Ning Zhang**, Xiao-Ze Du
Key Laboratory of Condition Monitoring and Control for Power Plant Equipment (Ministry of Education), North China Electric Power University, Beijing 102206
Cite this article:   
Ting Chen, Yu-Ning Zhang, Xiao-Ze Du 2016 Chin. Phys. Lett. 33 116401
Download: PDF(398KB)   PDF(mobile)(KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Ventilated cavitation plays an important role on the drag reduction of underwater vehicles and surface ships. For the modelling of ventilated cavitation, the minimum speed of the pressure wave is a crucial parameter for the closure of the pressure-density coupling relationship. In this study, the minimum wave speed is determined based on a theoretical model coupling the wave equation and the bubble interface motion equation. The influences of several paramount parameters (e.g., frequency, bubble radius and void fraction) on the minimum wave speed are quantitatively demonstrated and discussed. Compared with the minimum wave speed in the traditional cavitation, values for the ventilated cavitation are much higher. The physical mechanisms for the above difference are briefly discussed with the suggestions on the usage of the present findings.
Received: 22 July 2016      Published: 28 November 2016
PACS:  64.70.fm (Thermodynamics studies of evaporation and condensation)  
  47.35.Rs (Sound waves)  
  47.55.Ca (Gas/liquid flows)  
Fund: Supported by the National Natural Science Foundation of China under Grant No 51506051.
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/33/11/116401       OR      https://cpl.iphy.ac.cn/Y2016/V33/I11/116401
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Ting Chen
Yu-Ning Zhang
Xiao-Ze Du
[1]Brennen C E 2005 Fundamentals of Multiphase Flows (Cambridge: Cambridge University Press)
[2]Ceccio S L 2010 Annu. Rev. Fluid Mech. 42 183
[3]Yu A, Luo X and Ji B 2015 Sci. Bull. 60 1833
[4]Ji B, Luo X W, Zhang Y, Ran H J, Xu H Y and Wu Y L 2010 Chin. Phys. Lett. 27 096401
[5]Wang Y W, Huang C G, Du T Z, Wu X Q, Fang X, Liang N G and Wei Y P 2012 Chin. Phys. Lett. 29 014601
[6]Delannoy Y and Kueny J L 1990 ASME Cavitation Multiphase Flow Forum (Toronto Canada 4–7 Jun 1990) 98 p 153
[7]Shamsborhan H, Coutier-Delgosha O, Caignaert G and Nour F A 2010 Exp. Fluids 49 1359
[8]Jakobsen J K 1964 J. Basic. Eng. -T. ASME 86 291
[9]Testud P, Moussou P, Hirschberg A and Aurégan Y 2007 J. Fluids Struct. 23 163
[10]Coutier-Delgosha O, Reboud J L and Delannoy Y 2003 Int. J. Numer. Meth. Fl. 42 527
[11]Stutz B and Reboud J L 2000 Exp. Fluids 29 545
[12]Goncalvés E and Patella R F 2009 Comput. Fluids 38 1682
[13]Zhang Y N and Du X 2015 Ultrason. Sonochem. 26 119
[14]Zhang Y N and Li S C 2010 J. Acoust. Soc. Am. 128 EL306
[15]Zhang Y N and Li S C 2014 J. Heat Trans. T. ASME 136 042001
[16]Zhang Y N and Li S C 2014 Int. J. Heat Mass Tran. 69 106
[17]Commander K W and Prosperetti A 1989 J. Acoust. Soc. Am. 85 732
[18]Prosperetti A 2015 Interface Focus 5 20150024
Related articles from Frontiers Journals
[1] Zhu Ma, Chengyin Han, Xunda Jiang, Ruihuan Fang, Yuxiang Qiu, Minhua Zhao, Jiahao Huang, Bo Lu, and Chaohong Lee. Production of $^{87}$Rb Bose–Einstein Condensate in an Asymmetric Crossed Optical Dipole Trap[J]. Chin. Phys. Lett., 2021, 38(10): 116401
[2] Rehman Fazal, Jia-Zhen Li, Zhi-Wen Chen, Yuan Qin, Ya-Yi Lin, Zuan-Xian Zhang, Shan-Chao Zhang, Wei Huang, Hui Yan, Shi-Liang Zhu. Production of $^{87}$Rb Bose–Einstein Condensate with a Simple Evaporative Cooling Method[J]. Chin. Phys. Lett., 2020, 37(3): 116401
[3] Tian-You Gao, Dong-Fang Zhang, Ling-Ran Kong, Rui-Zong Li, Kai-Jun Jiang. Observation of Atomic Dynamic Behaviors in the Evaporative Cooling by In-Situ Imaging the Plugged Hole of Ultracold Atoms[J]. Chin. Phys. Lett., 2018, 35(8): 116401
[4] Dong-Fang Zhang, Tian-You Gao, Ling-Ran Kong, Kai Li, Kai-Jun Jiang. Production of Rubidium Bose–Einstein Condensate in an Optically Plugged Magnetic Quadrupole Trap[J]. Chin. Phys. Lett., 2016, 33(07): 116401
[5] JI Bin, LUO Xian-Wu, WU Yu-Lin, XU Hong-Yuan. Unsteady Cavitating Flow around a Hydrofoil Simulated Using the Partially-Averaged Navier–Stokes Model[J]. Chin. Phys. Lett., 2012, 29(7): 116401
[6] TAN Lei, CAO Shu-Liang**, WANG Yu-Ming, ZHU Bao-Shan. Numerical Simulation of Cavitation in a Centrifugal Pump at Low Flow Rate[J]. Chin. Phys. Lett., 2012, 29(1): 116401
[7] LUO Xian-Wu**, JI Bin, ZHANG Yao, XU Hong-Yuan. Cavitating Flow over a Mini Hydrofoil[J]. Chin. Phys. Lett., 2012, 29(1): 116401
[8] HUANG Biao, WANG Guo-Yu** . Evaluation of a Filter-Based Model for Computations of Cavitating Flows[J]. Chin. Phys. Lett., 2011, 28(2): 116401
[9] JI Bin, LUO Xian-Wu, ZHANG Yao, RAN Hong-Juan, XU Hong-Yuan, WU Yu-Lin. A Three-Component Model Suitable for Natural and Ventilated Cavitation[J]. Chin. Phys. Lett., 2010, 27(9): 116401
[10] ZHANG Yao, LUO Xian-Wu, JI Bin, LIU Shu-Hong, WU Yu-Lin, XU Hong-Yuan. A Thermodynamic Cavitation Model for Cavitating Flow Simulation in a Wide Range of Water Temperatures[J]. Chin. Phys. Lett., 2010, 27(1): 116401
[11] YU An, LUO Xian-Wu, JI Bin, HUANG Ren-Fang, HIDALGO Victor, KIM Song Hak. Cavitation Simulation with Consideration of the Viscous Effect at Large Liquid Temperature Variation[J]. Chin. Phys. Lett., 2014, 31(08): 116401
Viewed
Full text


Abstract