CONDENSED MATTER: STRUCTURE, MECHANICAL AND THERMAL PROPERTIES |
|
|
|
|
An Experimental Study of Thermophysical Properties for Quinary High-Entropy NiFeCoCrCu/Al Alloys |
Wei-Li Wang, Li-Jun Meng, Liu-Hui Li, Liang Hu, Kai Zhou, Zhang-Huan Kong, Bing-Bo Wei** |
Department of Applied Physics, Northwestern Polytechnical University, Xi'an 710072
|
|
Cite this article: |
Wei-Li Wang, Li-Jun Meng, Liu-Hui Li et al 2016 Chin. Phys. Lett. 33 116102 |
|
|
Abstract Two quinary high-entropy alloys (HEAs) with equiatomic concentrations formed by doping either Cu or Al elements into the quaternary NiFeCoCr alloy are produced by arc melting and spray casting techniques. Their entropy of fusion, thermal expansion coefficient and thermal diffusivity are experimentally investigated with differential scanning calorimetry, dilatometry and laser flash methods. The NiFeCoCrCu HEAs contain a face-centered cubic high-entropy phase plus a minor interdendritic (Cu) phase and display a lower entropy of fusion and the Vickers hardness. The NiFeCoCrAl HEAs consist of two body-centered cubic high-entropy phases with coarse dendritic structures and show higher entropy of fusion and the Vickers hardness. Both the thermal expansion coefficient and the thermal diffusivity of the former Cu-doped alloy are significantly larger than those of the latter Al-doped alloy. Although the temperature dependence of thermal diffusivity is similar for both HEAs, it is peculiar that the thermal expansion curve of the NiFeCoCrAl alloy exhibits an inflexion at temperatures of 860–912 K.
|
|
Received: 18 August 2016
Published: 28 November 2016
|
|
PACS: |
61.25.Mv
|
(Liquid metals and alloys)
|
|
65.20.-w
|
(Thermal properties of liquids)
|
|
65.40.De
|
(Thermal expansion; thermomechanical effects)
|
|
66.30.Xj
|
(Thermal diffusivity)
|
|
|
Fund: Supported by the National Natural Science Foundation of China under Grant Nos 51571163, 51371150, 51271150 and 51327901 |
|
|
[1] | Gludovatz B, Hohenwarter A, Catoor D et al 2014 Science 354 1153 | [2] | Yeh J W, Chen S K, Lin S J et al 2004 Adv. Eng. Mater. 6 299 | [3] | Santodonato L J, Zhang Y, Feygenson M et al 2015 Nat. Commun. 6 5964 | [4] | Ko?elj P, Vrtnik S, Jelen A et al 2014 Phys. Rev. Lett. 113 107001 | [5] | Zou Y, Ma H and Spolenak R 2015 Nat. Commun. 6 7748 | [6] | Cheng J B, Liang X B and Xu B S 2014 Surf. Coat. Technol. 240 184 | [7] | Braeckman B R and Depla D 2015 J. Alloys Compd. 646 810 | [8] | Du Y Y, Lu Y P, Wang T M et al 2012 Procedia Eng. 27 1129 | [9] | Tong C J, Chen S K, Yeh J W et al 2005 Metall. Mater. Trans. A 36 881 | [10] | Yang H H, Tsai W T, Kuo J C and Yang C C 2011 J. Alloys Compd. 509 8176 | [11] | Yue T M, Xie H, Lin X et al 2014 J. Alloys Compd. 587 588 | [12] | Paradis P F, Ishikawa T and Yoda S 2005 Inter J. Thermophys. 26 1031 | [13] | Hu L, Li L H, Yang S J and Wei B 2015 Chem. Phys. Lett. 621 91 | [14] | Jakse N and Pasturel A 2007 Phys. Rev. Lett. 99 205702 | [15] | Luo B C, Wang H P and Wei B 2009 Philos. Mag. Lett. 89 527 | [16] | Gallino I, Schroers J and Busch R 2010 J. Appl. Phys. 108 063501 | [17] | Chang J, Wang H P and Wei B 2013 Philos. Mag. Lett. 93 254 | [18] | Chou H P, Chang Y S, Chen S K and Yeh J W 2009 Mater. Sci. Engin. B 163 184 | [19] | Chen M R, Lin S J, Yeh J W et al 2006 Metall. Mater. Trans. A 37 1363 | [20] | Tariq N H, Naeem M, Hasan B A et al 2013 J. Alloys Compd. 556 79 | [21] | Senkov O N, Wilks G B, Miracle D B et al 2010 Intermetallics 18 1758 | [22] | Laplanche G, Gadaud P, Horst O et al 2015 J. Alloys Compd. 623 348 | [23] | Yao M J, Pradeep K G, Tasan C C and Raabe D 2014 Scr. Mater. 72 5 | [24] | Li Y D, Hao Q H, Cao Q L et al 2010 Chin. Phys. B 19 086104 |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|