FUNDAMENTAL AREAS OF PHENOMENOLOGY(INCLUDING APPLICATIONS) |
|
|
|
|
Silicon Wafer: a Direct Output Coupler in Tm:YLF Laser |
Xi-Kui Ren, Chen-Lin Du, Chun-Bo Li, Li Yu, Jun-Qing Zhao, Shuang-Chen Ruan** |
Shenzhen Key Laboratory of Laser Engineering, Key Laboratory of Advanced Optical Precision Manufacturing Technology of Guangdong Higher Education Institutes, College of Optoelectronic Engineering, Shenzhen University, Shenzhen 518060
|
|
Cite this article: |
Xi-Kui Ren, Chen-Lin Du, Chun-Bo Li et al 2016 Chin. Phys. Lett. 33 114203 |
|
|
Abstract We present a high power diode-pumped continuous-wave Tm:YLF (Tm$^{3+}$-doped lithium yttrium fluoride) laser with a piece of silicon wafer as the output coupler (Si-OC laser) directly. Under the pump power of 40 W at 793 nm, a maximum output power of 12.1 W is obtained with a beam quality of $M^{2}\le 1.55$ at 1887 nm, corresponding to an optical-to-optical efficiency of 30.25% and a slope efficiency of 33.21%. To the best of our knowledge, this is the first report on directly utilizing silicon as an output coupler (Si-OC) in the solid Tm:YLF laser system. Due to the intriguing characteristics of silicon, such as negligible absorption in the wavelength region around 2 μm, high damage threshold, low cost and long-pass filter properties, double-side polished monocrystalline silicon wafer is considered as an outstanding candidate output coupler in the high-power laser system 2 μm spectral region, which may dramatically reduce the total manufacturing costs of the 2 μm laser system.
|
|
Received: 05 August 2016
Published: 28 November 2016
|
|
|
|
Fund: Supported by the Science and Technology Project of Shenzhen under Grant Nos JCYJ20140509172609175 and JSGG20140519104809878, and the Science and Technology Project of Guangdong Province under Grant No 2014B010131006. |
|
|
[1] | Gower M C 2000 Opt. Express 7 56 | [2] | Sigrist M W 2003 Rev. Sci. Instrum. 74 486 | [3] | Koch G J, Barnes B W, Petros M, Beyon J Y, Amzajerdian F, Yu J, Davis R E, Ismail S, Vay S, Kavaya M J and Singh U N 2004 Appl. Opt. 43 5092 | [4] | Henderson S W, Suni P J M, Hale C P, Hannon S M, Magee J R, Bruns D L and Yuen E H 1993 IEEE Trans. Geosci. Remot. 31 4 | [5] | Linton C 2014 J. Mol. Spectrosc. 301 39 | [6] | Muschter R 2001 Med. Laser Appl. 16 5 | [7] | Antipov O L, Zakharov N G, Fedorov M, Shakhova N M, Prodanets N N, Snopova L B, Sharkov V V and Sroka R 2011 Med. Laser Appl. 26 67 | [8] | Curcio J A and Petty C C 1951 J. Opt. Soc. Am. 41 302 | [9] | Budni P A, Knights M G, Chicklis E P and Schepler K L 1993 Opt. Lett. 18 1068 | [10] | Yao B, Li G, Zhu G, Meng P, Ju Y and Wang Y 2012 Chin. Phys. B 21 034213 | [11] | Xu L, Zhang S and Chen W 2012 Opt. Lett. 37 743 | [12] | Yokozawa T and Hara H 1996 Appl. Opt. 35 1424 | [13] | Elder I F and Payne J 1997 Appl. Opt. 36 8606 | [14] | Elder I F and Payne M J P 1998 Opt. Commun. 145 329 | [15] | Gorajek ?, Jabczyński J K, ?endzian W, Kwiatkowski J, Jelinkova H, Sulc J and Nemec M 2009 OptoElectron. Rev. 17 309 | [16] | Yao B Q, Ke L, Duan X M, Li G, Yang X T, Ju Y L and Wang Y Z 2009 Laser Phys. Lett. 6 563 | [17] | Zhu G 2015 Chin. Phys. Lett. 32 094207 | [18] | Ding Y, Zhang D X, Wang W, Yao B Q, Duan X M, Ju Y L and Wang Y Z 2015 Optik Int. J. Light Electron. Opt. 126 855 | [19] | Aspnes D E and Studna A A 1983 Phys. Rev. B 27 985 | [20] | Eichler H J, Liu B, Kayser M and Khomenko S I 1996 Opt. Mater. 5 259 | [21] | Wen C P, Tuan P H, Liang H C, Tsou C H, Su K W, Huang K F and Chen Y F 2015 Opt. Express 23 30749 | [22] | Herzinger C M, Johs B, McGahan W A, Woollam J A and Paulson W 1998 J. Appl. Phys. 83 3323 | [23] | Loewenstein E V, Smith D R and Morgan R L 1973 Appl. Opt. 12 398 |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|