Chin. Phys. Lett.  2016, Vol. 33 Issue (11): 114203    DOI: 10.1088/0256-307X/33/11/114203
FUNDAMENTAL AREAS OF PHENOMENOLOGY(INCLUDING APPLICATIONS) |
Silicon Wafer: a Direct Output Coupler in Tm:YLF Laser
Xi-Kui Ren, Chen-Lin Du, Chun-Bo Li, Li Yu, Jun-Qing Zhao, Shuang-Chen Ruan**
Shenzhen Key Laboratory of Laser Engineering, Key Laboratory of Advanced Optical Precision Manufacturing Technology of Guangdong Higher Education Institutes, College of Optoelectronic Engineering, Shenzhen University, Shenzhen 518060
Cite this article:   
Xi-Kui Ren, Chen-Lin Du, Chun-Bo Li et al  2016 Chin. Phys. Lett. 33 114203
Download: PDF(808KB)   PDF(mobile)(KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract We present a high power diode-pumped continuous-wave Tm:YLF (Tm$^{3+}$-doped lithium yttrium fluoride) laser with a piece of silicon wafer as the output coupler (Si-OC laser) directly. Under the pump power of 40 W at 793 nm, a maximum output power of 12.1 W is obtained with a beam quality of $M^{2}\le 1.55$ at 1887 nm, corresponding to an optical-to-optical efficiency of 30.25% and a slope efficiency of 33.21%. To the best of our knowledge, this is the first report on directly utilizing silicon as an output coupler (Si-OC) in the solid Tm:YLF laser system. Due to the intriguing characteristics of silicon, such as negligible absorption in the wavelength region around 2 μm, high damage threshold, low cost and long-pass filter properties, double-side polished monocrystalline silicon wafer is considered as an outstanding candidate output coupler in the high-power laser system 2 μm spectral region, which may dramatically reduce the total manufacturing costs of the 2 μm laser system.
Received: 05 August 2016      Published: 28 November 2016
PACS:  42.55.Xi (Diode-pumped lasers)  
  42.60.By (Design of specific laser systems)  
  42.60.Pk (Continuous operation)  
  42.62.Cf (Industrial applications)  
Fund: Supported by the Science and Technology Project of Shenzhen under Grant Nos JCYJ20140509172609175 and JSGG20140519104809878, and the Science and Technology Project of Guangdong Province under Grant No 2014B010131006.
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/33/11/114203       OR      https://cpl.iphy.ac.cn/Y2016/V33/I11/114203
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Xi-Kui Ren
Chen-Lin Du
Chun-Bo Li
Li Yu
Jun-Qing Zhao
Shuang-Chen Ruan
[1]Gower M C 2000 Opt. Express 7 56
[2]Sigrist M W 2003 Rev. Sci. Instrum. 74 486
[3]Koch G J, Barnes B W, Petros M, Beyon J Y, Amzajerdian F, Yu J, Davis R E, Ismail S, Vay S, Kavaya M J and Singh U N 2004 Appl. Opt. 43 5092
[4]Henderson S W, Suni P J M, Hale C P, Hannon S M, Magee J R, Bruns D L and Yuen E H 1993 IEEE Trans. Geosci. Remot. 31 4
[5]Linton C 2014 J. Mol. Spectrosc. 301 39
[6]Muschter R 2001 Med. Laser Appl. 16 5
[7]Antipov O L, Zakharov N G, Fedorov M, Shakhova N M, Prodanets N N, Snopova L B, Sharkov V V and Sroka R 2011 Med. Laser Appl. 26 67
[8]Curcio J A and Petty C C 1951 J. Opt. Soc. Am. 41 302
[9]Budni P A, Knights M G, Chicklis E P and Schepler K L 1993 Opt. Lett. 18 1068
[10]Yao B, Li G, Zhu G, Meng P, Ju Y and Wang Y 2012 Chin. Phys. B 21 034213
[11]Xu L, Zhang S and Chen W 2012 Opt. Lett. 37 743
[12]Yokozawa T and Hara H 1996 Appl. Opt. 35 1424
[13]Elder I F and Payne J 1997 Appl. Opt. 36 8606
[14]Elder I F and Payne M J P 1998 Opt. Commun. 145 329
[15]Gorajek ?, Jabczyński J K, ?endzian W, Kwiatkowski J, Jelinkova H, Sulc J and Nemec M 2009 OptoElectron. Rev. 17 309
[16]Yao B Q, Ke L, Duan X M, Li G, Yang X T, Ju Y L and Wang Y Z 2009 Laser Phys. Lett. 6 563
[17]Zhu G 2015 Chin. Phys. Lett. 32 094207
[18]Ding Y, Zhang D X, Wang W, Yao B Q, Duan X M, Ju Y L and Wang Y Z 2015 Optik Int. J. Light Electron. Opt. 126 855
[19]Aspnes D E and Studna A A 1983 Phys. Rev. B 27 985
[20]Eichler H J, Liu B, Kayser M and Khomenko S I 1996 Opt. Mater. 5 259
[21]Wen C P, Tuan P H, Liang H C, Tsou C H, Su K W, Huang K F and Chen Y F 2015 Opt. Express 23 30749
[22]Herzinger C M, Johs B, McGahan W A, Woollam J A and Paulson W 1998 J. Appl. Phys. 83 3323
[23]Loewenstein E V, Smith D R and Morgan R L 1973 Appl. Opt. 12 398
Related articles from Frontiers Journals
[1] Jianping Shen, Xin Huang, Songtao Jiang, Rongrong Jiang, Huiyin Wang, Peng Lu, Shaocong Xu, and Mingyu Jiao. Design and Development of a High-Performance LED-Side-Pumped Nd:YAG Rod Laser[J]. Chin. Phys. Lett., 2022, 39(10): 114203
[2] Zhi-Feng Zhang, Shuai Li, Yang Li, Yang Kou, Ke Liu, Yan-Yong Lin, Lei Yuan, Yi-Ting Xu, Qin-Jun Peng, Zu-Yan Xu. A 117-W 1.66-Times Diffraction Limited Continuous-Wave Nd:YVO$_{4}$ Zigzag Slab Laser with Multilayer Amplified-Spontaneous-Emission Absorbing Coatings *[J]. Chin. Phys. Lett., 0, (): 114203
[3] Zhi-Feng Zhang, Shuai Li, Yang Li, Yang Kou, Ke Liu, Yan-Yong Lin, Lei Yuan, Yi-Ting Xu, Qin-Jun Peng, Zu-Yan Xu. A 117-W 1.66-Times Diffraction Limited Continuous-Wave Nd:YVO$_{4}$ Zigzag Slab Laser with Multilayer Amplified-Spontaneous-Emission Absorbing Coatings[J]. Chin. Phys. Lett., 2020, 37(6): 114203
[4] Rui Guo, Ye-Wen Jiang, Ting-Hao Liu, Qiang Liu, Ma-Li Gong. Pulse Characteristics of Cavityless Solid-State Laser[J]. Chin. Phys. Lett., 2020, 37(4): 114203
[5] Fang-Jin Ning, Zhi-Yong Li, Rong-Qing Tan, Lie-Mao Hu, Song-Yang Liu. Diode Pumped Rubidium Laser Based on Etalon Effects of Alkali Cell Windows[J]. Chin. Phys. Lett., 2020, 37(3): 114203
[6] Jia-Jun Song, Xiang-Hao Meng, Zhao-Hua Wang, Xian-Zhi Wang, Wen-Long Tian, Jiang-Feng Zhu, Shao-Bo Fang, Hao Teng, Zhi-Yi Wei. Generation of Femtosecond Laser Pulse at 1.43GHz from an Optical Parametric Oscillator Based on LBO Crystal[J]. Chin. Phys. Lett., 2019, 36(12): 114203
[7] Qiu-Run He, Jing Guo, Bao-Fu Zhang, Zhong-Xing Jiao. High-Repetition-Rate and High-Beam-Quality Laser Pulses with 1.5MW Peak Power Generation from a Two-Stage Nd:YVO$_{4}$ Amplifier[J]. Chin. Phys. Lett., 2019, 36(11): 114203
[8] Shuang Wu, Yong-Ji Yu, Yue Li, Yu-Heng Wang, Jing-Liang Liu, Guang-Yong Jin. Wavelength-Locked 878.6nm In-Band Pumped Intra-Cavity 2.1μm Optical Parametric Oscillator[J]. Chin. Phys. Lett., 2019, 36(8): 114203
[9] Xiao-Ming Duan, Guang-Peng Chen, Ying-Jie Shen, Li-He Zheng, Liang-Bi Su. High-Power Continuous-Wave and Acousto-Optical Q-Switched Ho:(Sc$_{0.5}$Y$_{0.5}$)$_{2}$SiO$_{5}$ Laser Pumped by Laser Diode[J]. Chin. Phys. Lett., 2019, 36(6): 114203
[10] Shuai Li, Ya-Ding Guo, Zhong-Zheng Chen, Lin Zhang, Ke-Ling Gong, Zhi-Feng Zhang, Bao-Shan Wang, Jian Xu, Yi-Ting Xu, Lei Yuan, Yang Kou, Yang Liu, Yan-Yong Lin, Qin-Jun Peng, Zu-Yan Xu. The 10kW Level High Brightness Face-Pumped Slab Nd:YAG Amplifier with a Hybrid Cooling System[J]. Chin. Phys. Lett., 2019, 36(4): 114203
[11] Qing-Qing Zhou, Shen-Cheng Shi, Si-Meng Chen, Yan-Min Duan, Xi-Mei Zhang, Jing Guo, Bin Zhao, Hai-Yong Zhu. First-Stokes Wavelengths at 1175.8 and 1177.1nm Generated in a Diode End-Pumped Nd:YVO$_{4}$/LuVO$_{4}$ Raman Laser[J]. Chin. Phys. Lett., 2019, 36(1): 114203
[12] Xiao-Dan Dou, Jing-Nan Yang, Yan-Jun Ma, Wen-Juan Han, Hong-Hao Xu, Jun-Hai Liu. Passive Q-Switching of a Yb:LuVO$_{4}$ Laser with Cr$^{4+}$:YAG: Approaching the Intrinsic Upper Limit of Repetition Rate[J]. Chin. Phys. Lett., 2018, 35(6): 114203
[13] Qi Qin, Ping Li, Jin-Xi Bai, Li-Li Wang, Bing-Hai Liu, Xiao-Han Chen. Passively Q-Switched Nd:YVO$_{4}$ Laser Using a Gold Nanotriangle Saturable Absorber[J]. Chin. Phys. Lett., 2018, 35(6): 114203
[14] Wei Si, Yan-Jun Ma, Li-Sha Wang, Hua-Lei Yuan, Wei-Jin Kong, Jun-Hai Liu. Acousto-Optically Q-Switched Operation of Yb:CNGG Disordered Crystal Laser[J]. Chin. Phys. Lett., 2017, 34(12): 114203
[15] Lei Liu, Shou-Huan Zhou, Yang Liu, Zhe Wang, Gang Wang, Hong Zhao. The 5.2kW Nd:YAG Slab Amplifier Chain Seeded by Nd:YVO$_{4}$ Innoslab Laser[J]. Chin. Phys. Lett., 2017, 34(6): 114203
Viewed
Full text


Abstract