Chin. Phys. Lett.  2016, Vol. 33 Issue (11): 114202    DOI: 10.1088/0256-307X/33/11/114202
FUNDAMENTAL AREAS OF PHENOMENOLOGY(INCLUDING APPLICATIONS) |
Coherent Transfer of Optical Frequency over 112km with Instability at the 10$^{-20}$ Level
Xue Deng1,3, Jie Liu1,2,3, Dong-Dong Jiao1,3, Jing Gao1,3, Qi Zang1,2,3, Guan-Jun Xu1,3, Rui-Fang Dong1,3, Tao Liu1,3**, Shou-Gang Zhang1,3
1National Time Service Centre, Chinese Academy of Sciences, Xi'an 710600
2University of Chinese Academy of Sciences, Beijing 100049
3Key Laboratory of Time and Frequency Standards, Chinese Academy of Sciences, Xi'an 710600
Cite this article:   
Xue Deng, Jie Liu, Dong-Dong Jiao et al  2016 Chin. Phys. Lett. 33 114202
Download: PDF(533KB)   PDF(mobile)(KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract We demonstrate optical-carrier transfer over a 112-km single-span urban fiber link. By actively compensating the phase noise induced along the fiber link, a noise suppression of 55 dB at 1 Hz is obtained. A fractional frequency instability of $2.5\times10^{-16}$ at 1 s is achieved, and reaching $7.5\times10^{-20}$ at 10000 s. The system is stable and able to run for a long time. This work will contribute to optical frequency distribution and remote comparison among atomic clocks.
Received: 12 July 2016      Published: 28 November 2016
PACS:  42.62.Eh (Metrological applications; optical frequency synthesizers for precision spectroscopy)  
  42.79.Sz (Optical communication systems, multiplexers, and demultiplexers?)  
  06.30.Ft (Time and frequency)  
Fund: Supported by the Special Fund for Major Scientific Equipment and Instrument Development of the National Natural Science Foundation of China under Grant No 61127901, the National Natural Science Foundation of China under Grant Nos 10225417, 11273024, 61025023 and 91636101, the Young Scientists Fund of the National Natural Science Foundation of China under Grant No 11403031, the Key Deployment Project of the Chinese Academy of Sciences under Grant No KJZD-EW-W02, the Strategic Priority Research Program of the Chinese Academy of Sciences under Grant No XDB21030800, and the National Key Research and Development Program of China under Grant Nos 2016YFF0200200 and 2016YFF0200205.
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/33/11/114202       OR      https://cpl.iphy.ac.cn/Y2016/V33/I11/114202
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Xue Deng
Jie Liu
Dong-Dong Jiao
Jing Gao
Qi Zang
Guan-Jun Xu
Rui-Fang Dong
Tao Liu
Shou-Gang Zhang
[1]Huntemann N et al 2012 Phys. Rev. Lett. 108 090801
[2]Sherman J A et al 2012 Phys. Rev. Lett. 108 153002
[3]Fujieda M et al 2011 Opt. Express 19 16498
[4]Chou C et al 2010 Science 329 1630
[5]Bjerhammar A 1985 Bull. Geod. 59 207
[6]Delva P and Lodewyck J 2013 arXiv:1308.6766v1
[7]Bauch A et al 2006 Metrologia 43 109
[8]Droste S, Ozimek F, Udem T, Hansch T, Schnatz H, Grosche G and Holzwarth R 2013 Phys. Rev. Lett. 111 110801
[9]Ma C Q, Wu L F, Jiang Y Y, Yu H F, Bi Z Y and Ma L S 2015 Chin. Phys. B 24 084209
[10]Calonico D, Bertacco K E, Calosso E C, Clivati C, Costanzo A G, Frittelli M, Godone A, Mura A, Poli N, Sutyrin V D, Tino G, Zucco E M and Levi F 2014 Appl. Phys. B 117 979
[11]Lopez O, Haboucha A, Chanteau B, Chardonnet C, Amy-Klein A and Santarelli G 2012 Opt. Express 20 23518
[12]Jiang H, Kéfélian F, Craneet S, Lopez O, Lours M, Millo J, Holleville D, Lemonde P, Chardonnet C, Amy-Klein A and Santarelli G 2008 J. Opt. Soc. Am. B 25 2029
[13]Liu J, Gao J, Xu G J, Jiao D D, Yan L L, Dong R F, Jiang H F, Liu T and Zhang S G 2015 Acta Phys. Sin. 64 120602 (in Chinese)
[14]Schediwy W S, Gozzard D, Baldwin G H K, Orr J B, Warrington B R, Aben G and Luiten A N 2013 Opt. Lett. 38 2893
[15]Calosso E C, Bertacco E, Calonico D and Clivati C 2014 Opt. Lett. 39 1177
[16]Bercy A, Stefani F, Lopez O, Chardonnet C, Pottie E P and Amy Klein A 2014 Phys. Rev. A 90 061802(R)
[17]Cheng N, Chen W, Liu Q, Xu D, Yang F, Gui Y Z and Cai H W 2016 Chin. Phys. B 25 014206
[18]Jiao D D, Gao J, Liu J, Deng X, Xu G J, Chen J P, Dong R F, Liu T and Zhang S G 2015 Acta Phys. Sin. 64 190601 (in Chinese)
[19]Newbury N R, Williams P A and Swann W C 2007 Opt. Lett. 32 3056
[20]Grosche G, Terra O, Predehl K, Holzwarth R, Lipphardt B, Vogt F, Sterr U and Schnatz H 2009 Opt. Lett. 34 2270
[21]Williams P A, Swann W C and Newbury N R 2008 J. Opt. Soc. Am. B 25 1284
Related articles from Frontiers Journals
[1] Bing-Kun Lu, Zhen Sun, Tao Yang, Yi-Ge Lin, Qiang Wang, Ye Li, Fei Meng, Bai-Ke Lin, Tian-Chu Li, and Zhan-Jun Fang. Improved Evaluation of BBR and Collisional Frequency Shifts of NIM-Sr2 with $7.2 \times 10^{-18}$ Total Uncertainty[J]. Chin. Phys. Lett., 2022, 39(8): 114202
[2] Xiang Zhang, Xue Deng, Qi Zang, Dongdong Jiao, Jing Gao, Dan Wang, Qian Zhou, Jie Liu, Guanjun Xu, Ruifang Dong, Tao Liu, and Shougang Zhang. Coherent Optical Frequency Transfer via a 490 km Noisy Fiber Link[J]. Chin. Phys. Lett., 2022, 39(4): 114202
[3] Dong-Jie Wang, Xiang Zhang, Jie Liu, Dong-Dong Jiao, Xue Deng, Jing Gao, Qi Zang, Dan Wang, Tao Liu, Rui-Fang Dong, and Shou-Gang Zhang. Novel Polarization Control Approach to Long-Term Fiber-Optic Frequency Transfer[J]. Chin. Phys. Lett., 2020, 37(9): 114202
[4] Kai Ning, Lei Hou, Song-Tao Fan, Lu-Lu Yan, Yan-Yan Zhang, Bing-Jie Rao, Xiao-Fei Zhang, Shou-Gang Zhang, Hai-Feng Jiang. An All-Polarization-Maintaining Multi-Branch Optical Frequency Comb for Highly Sensitive Cavity Ring-Down Spectroscopy *[J]. Chin. Phys. Lett., 0, (): 114202
[5] Kai Ning, Lei Hou, Song-Tao Fan, Lu-Lu Yan, Yan-Yan Zhang, Bing-Jie Rao, Xiao-Fei Zhang, Shou-Gang Zhang, Hai-Feng Jiang. An All-Polarization-Maintaining Multi-Branch Optical Frequency Comb for Highly Sensitive Cavity Ring-Down Spectroscopy[J]. Chin. Phys. Lett., 2020, 37(6): 114202
[6] Chao Wang, Xue-Feng Liu, Wen-Kai Yu, Xu-Ri Yao, Fu Zheng, Qian Dong, Ruo-Ming Lan, Zhi-Bin Sun, Guang-Jie Zhai, Qing Zhao. Computational Spectral Imaging Based on Compressive Sensing[J]. Chin. Phys. Lett., 2017, 34(10): 114202
[7] Wei-Xin Liu, Ming-Zhe Sun. Anomalous Variation of Beat Frequency in a Dual Frequency He–Ne Laser[J]. Chin. Phys. Lett., 2016, 33(02): 114202
[8] YAN Lu-Lu, ZHANG Yan-Yan, ZHANG Long, FAN Song-Tao, ZHANG Xiao-Fei, GUO Wen-Ge, ZHANG Shou-Gang, JIANG Hai-Feng. Attosecond-Resolution Er:Fiber-Based Optical Frequency Comb[J]. Chin. Phys. Lett., 2015, 32(10): 114202
[9] LIN Yi-Ge, WANG Qiang, LI Ye, MENG Fei, LIN Bai-Ke, ZANG Er-Jun, SUN Zhen, FANG Fang, LI Tian-Chu, FANG Zhan-Jun. First Evaluation and Frequency Measurement of the Strontium Optical Lattice Clock at NIM[J]. Chin. Phys. Lett., 2015, 32(09): 114202
[10] LI Ye, LIN Yi-Ge, WANG Qiang, WANG Shao-Kai, ZHAO Yang, MENG Fei, LIN Bai-Ke, CAO Jian-Ping, LI Tian-Chu, FANG Zhan-Jun, ZANG Er-Jun. A Hertz-Linewidth Ultrastable Diode Laser System for Clock Transition Detection of Strontium Atoms[J]. Chin. Phys. Lett., 2014, 31(2): 114202
[11] TAN Yi-Dong, ZHANG Song, REN Zhou, ZHANG Yong-Qin, ZHANG Shu-Lian. Real-Time Liquid Evaporation Rate Measurement Based on a Microchip Laser Feedback Interferometer[J]. Chin. Phys. Lett., 2013, 30(12): 114202
[12] HOU Lei, HAN Hai-Nian, ZHANG Jin-Wei, LI De-Hua, WEI Zhi-Yi. A Wide Spaced Femtosecond Ti:Sapphire Frequency Comb at 15 GHz by a Fabry–Pérot Filter Cavity[J]. Chin. Phys. Lett., 2013, 30(10): 114202
[13] WU Yun, TAN Yi-Dong, ZHANG Shu-Lian, LI Yan. Influence of Feedback Level on Laser Polarization in Polarized Optical Feedback[J]. Chin. Phys. Lett., 2013, 30(8): 114202
[14] CHEN Wen-Xue, ZHANG Shu-Lian, LONG Xing-Wu. Multi-Wavelength Conversion Based on Single Wavelength Results in Phase Retardation Measurement[J]. Chin. Phys. Lett., 2013, 30(3): 114202
[15] WU Yun, TAN Yi-Dong. Birefringence Optical Feedback with a Folded Cavity in HeNe Laser[J]. Chin. Phys. Lett., 2013, 30(1): 114202
Viewed
Full text


Abstract