Chin. Phys. Lett.  2016, Vol. 33 Issue (01): 018402    DOI: 10.1088/0256-307X/33/1/018402
CROSS-DISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY |
Efficient Solution to Electromagnetic Scattering Problems of Bodies of Revolution by Compressive Sensing
Meng Kong1,2, Ming-Sheng Chen2**, Liang Zhang2, Xin-Yuan Cao2, Xian-Liang Wu1,2
1School of Electronic and Information Engineering, Anhui University, Hefei 230601
2School of Electronic and Information Engineering, Hefei Normal University, Hefei 230601
Cite this article:   
Meng Kong, Ming-Sheng Chen, Liang Zhang et al  2016 Chin. Phys. Lett. 33 018402
Download: PDF(640KB)   PDF(mobile)(KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Under the theory structure of compressive sensing (CS), an underdetermined equation is deduced for describing the discrete solution of the electromagnetic integral equation of body of revolution (BOR), which will result in a small-scale impedance matrix. In the new linear equation system, the small-scale impedance matrix can be regarded as the measurement matrix in CS, while the excited vector is the measurement of unknown currents. Instead of solving dense full rank matrix equations by the iterative method, with suitable sparse representation, for unknown currents on the surface of BOR, the entire current can be accurately obtained by reconstructed algorithms in CS for small-scale undetermined equations. Numerical results show that the proposed method can greatly improve the computational efficiency and can decrease memory consumed.

Received: 12 August 2015      Published: 29 January 2016
PACS:  84.40.-x (Radiowave and microwave (including millimeter wave) technology)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/33/1/018402       OR      https://cpl.iphy.ac.cn/Y2016/V33/I01/018402
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Meng Kong
Ming-Sheng Chen
Liang Zhang
Xin-Yuan Cao
Xian-Liang Wu

[1] Chen M S et al 2011 IEEE Antennas Wireless Propag. Lett. 10 1243
[2] Cao X Y et al 2014 Chin. Phys. Lett. 31 118401
[3] Meincke P and Jorgensen E 2014 IEEE International Symposium on Antennas and Propagation and USNC-URSI Radio Science Meeting (Memphis USA 6–11 July 2014) 1467
[4] Wilton D R 2014 IEEE International Symposium on Antennas and Propagation and USNC-URSI Radio Science Meeting (Memphis USA 6–11 July 2014) 278
[5] Su T et al 2014 IEEE Trans. Antennas Propag. 62 983
[6] Wu T K 2014 IEEE Antennas Propag. Mag. 56 315
[7] Mautz J R and Harrington R F 1969 Appl. Sci. Res. 20 405
[8] Wu T K and Tsu L L 1977 Radio Sci. 12 709
[9] Quan W and Ciric I R 2001 IEEE Trans. Magn. 37 3281
[10] Ciric I R and Quan W 2002 IEEE Trans. Magn. 38 725
[11] Baraniuk R G 2007 IEEE Signal Process. Mag. 24 118
[12] Candès E et al 2006 IEEE Trans. Inf. Theory 52 489
[13] Chen Z S et al 2009 J. Xidian University 36 463 (in Chinese)
[14] Seo S M and Lee J F 2005 IEEE Trans. Magn. 41 1476
[15] Bajwa W U et al 2007 IEEE/SP Workshop on Statistical Signal Processing IEEE Computer Society (Madison USA 26–29 Aug 2007) 294
[16] Chen Z H and Xiong Y 2015 Syst. Eng. Electron. 37 1023 (in Chinese)
[17] Wang Q et al 2013 Acta Electron. Sin. 41 2041 (in Chinese)
[18] Wang Z and Wang B Z 2014 Acta Phys. Sin. 63 120202 (in Chinese)
[19] Tropp J A and Gilbert A 2007 IEEE Trans. Inf. Theory 53 4655
[20] Cao X Y et al 2013 Chin. Phys. Lett. 30 028401

Related articles from Frontiers Journals
[1] Xiao-Yu Liu, Yong Zhang, De-Jiao Xia, Tian-Hao Ren, Jing-Tao Zhou, Dong Guo, Zhi Jin. A High-Sensitivity Terahertz Detector Based on a Low-Barrier Schottky Diode[J]. Chin. Phys. Lett., 2017, 34(7): 018402
[2] Tian-Hao Ren, Yong Zhang, Bo Yan, Rui-Min Xu, Cheng-Yue Yang, Jing-Tao Zhou, Zhi Jin. A High Performance Terahertz Waveguide Detector Based on a Low-Barrier Diode[J]. Chin. Phys. Lett., 2016, 33(06): 018402
[3] REN Tian-Hao, ZHANG Yong, YAN Bo, XU Rui-Min, YANG Cheng-Yue, ZHOU Jing-Tao, JIN Zhi. A 330–500 GHz Zero-Biased Broadband Tripler Based on Terahertz Monolithic Integrated Circuits[J]. Chin. Phys. Lett., 2015, 32(02): 018402
[4] CAO Xin-Yuan, CHEN Ming-Sheng, KONG Meng, ZHANG Liang, WU Xian-Liang. Method of Moments Based on Prior Knowledge for Solving Wide Angle EM Scattering Problems[J]. Chin. Phys. Lett., 2014, 31(11): 018402
[5] WANG Qi, ZHU Xiao-Feng, YUAN Xiao-Wen, CHEN Chang-Qing, LUO Xiang-Dong, ZHANG Bo. Sub-Wavelength Near-Field Metal Detection using an On-Chip Spintronic Technique[J]. Chin. Phys. Lett., 2013, 30(12): 018402
[6] LI Ru-Guan, JIANG Shu-Wen, GAO Li-Bin, LI Yan-Rong. A Distributed Phase Shifter Using Bi1.5Zn1.0Nb1.5O7/Ba0.5Sr0.5TiO3 Thin Films[J]. Chin. Phys. Lett., 2013, 30(7): 018402
[7] GAO Xiang, LI Chao, FANG Guang-You . The Realization of Terahertz Image Reconstruction with High Resolution Based on the Amplitude of the Echoed Wave by using the Phase Retrieval Algorithm[J]. Chin. Phys. Lett., 2013, 30(6): 018402
[8] XING Qing-Zi, DU Lei, ZHENG Shu-Xin, GUAN Xia-Ling, LI Jian, CAI Jin-Chi, GONG Cun-Kui, WANG Xue-Wu, TANG Chuan-Xiang, James Billen, James Stovall, Lloyd Young. Tuning and Cold Test of a Four-Vane RFQ with Ramped Inter-Vane Voltage for the Compact Pulsed Hadron Source[J]. Chin. Phys. Lett., 2013, 30(5): 018402
[9] CAO Xin-Yuan, CHEN Ming-Sheng, WU Xian-Liang. Sparse Transform Matrices and Their Application in the Calculation of Electromagnetic Scattering Problems[J]. Chin. Phys. Lett., 2013, 30(2): 018402
[10] ZHANG Jun-Feng, LI De-Ren, CHEN Zheng, LU Zhi-Chao, ZHOU Shao-Xiong. Noise Suppression Effect of Composites Containing Glass-Covered Amorphous CoFeSiBCr Wires[J]. Chin. Phys. Lett., 2012, 29(6): 018402
[11] YAO Bin, ZHENG Qin-Hong, **, PENG Jin-Hui, ZHONG Ru-Neng, XIANG Tai, XU Wan-Song . Partially Loaded Cavity Analysis by Using the 2-D FDTD Method[J]. Chin. Phys. Lett., 2011, 28(11): 018402
[12] LIU Zong-Kai, ZHOU Ben-Mou**, LIU Hui-Xing, LIU Zhi-Gang, JI Yan-Liang . Direct Force Control of a Rudder with the Action of a Coplanar Waveguide Product Microwave[J]. Chin. Phys. Lett., 2011, 28(9): 018402
[13] ZHANG Yu, ZHANG Xin-Liang, CHEN Guo-Jie, XU En-Ming, HUANG De-Xiu. A Microwave Photonic Notch Filter Using a Microfiber Ring Resonator[J]. Chin. Phys. Lett., 2010, 27(7): 018402
[14] XU Wei, XIN Xiang-Jun, ZHAO Tong-Gang, LING Jing, YU Chong-Xiu. Generation of Carrier and Odd Sidebands Suppressed Optical MM-Wave with Signal Only on One Sideband Using an External Integrated Mach-Zehnder Modulator[J]. Chin. Phys. Lett., 2009, 26(12): 018402
[15] WEN Fu-Sheng, QIAO Liang, YI Hai-Bo, ZHOU Dong, LI Fa-Shen. Calculation of High Frequency Complex Permeability of Carbonyl Iron Flakes in a Nomagnetic Matrix[J]. Chin. Phys. Lett., 2008, 25(2): 018402
Viewed
Full text


Abstract