Chin. Phys. Lett.  2016, Vol. 33 Issue (01): 016102    DOI: 10.1088/0256-307X/33/1/016102
CONDENSED MATTER: STRUCTURE, MECHANICAL AND THERMAL PROPERTIES |
Effect of Al Addition on the Glass-Forming Ability and Magnetic Properties of a Gd–Co Binary Amorphous Alloy
Cheng Wu, Ding Ding**, Lei Xia
Laboratory for Microstructure, Institute of Materials, Shanghai University, Shanghai 200072
Cite this article:   
Cheng Wu, Ding Ding, Lei Xia 2016 Chin. Phys. Lett. 33 016102
Download: PDF(686KB)   PDF(mobile)(KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract The glass-forming ability (GFA) and magnetic properties of the Gd$_{50}$Co$_{50}$-based amorphous alloy with Al addition substitution for Co are investigated. It is found that the GFA and magneto-caloric effect of the Gd$_{50}$Co$_{45}$Al$_{5}$ amorphous alloy are better than Gd$_{50}$Co$_{50}$ amorphous alloy. The maximum magnetic entropy change ($-\Delta S_{\rm m}^{\rm peak})$ and the magnetic refrigerant capacity of the amorphous alloy under a field of 5 T are about 6.64 J$\cdot$kg$^{-1}$K$^{-1}$ and 764 J$\cdot$kg$^{-1}$, respectively. The field dependence of magnetic entropy change meets the one predicted by the mean field theory, which is investigated for a better understanding of the magneto-caloric behaviors of the Gd$_{50}$Co$_{45}$Al$_{5}$ amorphous alloy.
Received: 28 September 2015      Published: 29 January 2016
PACS:  61.43.Dq (Amorphous semiconductors, metals, and alloys)  
  81.05.Kf (Glasses (including metallic glasses))  
  75.30.Sg (Magnetocaloric effect, magnetic cooling)  
  81.20.-n (Methods of materials synthesis and materials processing)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/33/1/016102       OR      https://cpl.iphy.ac.cn/Y2016/V33/I01/016102
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Cheng Wu
Ding Ding
Lei Xia
[1] Gschneidner K A and Pecharsky Jr V K 2000 Annu. Rev. Mater. Sci. 30 387
[2] Bruck E 2005 J. Phys. D 38 R381
[3] Inoue A 2000 Acta Mater. 48 279
[4] Johnson W L 2002 J. Minerals 54 40
[5] Wang W H, Dong C and Shek C H 2004 Mater. Sci. Eng. R 44 45
[6] Inoue A 2011 Acta Mater. 59 2243
[7] Du J, Zheng Q, Li Y B, Zhang Q, Li D and Zhang Z D 2008 J. Appl. Phys. 103 023918
[8] Dong Q Y, Shen B Q, Chen J, Shen J, Wang F, Zhang H W and Sun J R 2009 J. Appl. Phys. 105 053908
[9] Luo Q and Wang W H 2010 J. Alloys Compd. 495 209
[10] Wang P, Chan K C, Lu S, Tang M B and Xia L 2012 Chin. Phys. Lett. 29 096103
[11] Zhong X C, Tang P F, Liu Z W, Zeng D C, Zheng Z G, Yu H Y, Qiu W Q and Zou M 2011 J. Alloys Compd. 509 6889
[12] Zhong X C, Tang P F, Liu Z W, Zeng D C, Zheng Z G, Yu H Y, Qiu W Q, Zhang H and Ramanujan R V 2012 J. Appl. Phys. 111 07A919
[13] Yuan F, Du J and Shen B 2012 Appl. Phys. Lett. 101 032405
[14] Ding D, Wang P, Guan Q, Tang M B and Xia L 2013 Chin. Phys. Lett. 30 096104
[15] Xia L, Chan K C, Tang M B and Dong Y D 2014 J. Appl. Phys. 115 223904
[16] Wu C, Yu P and Xia L 2015 J. Non-Cryst. Solids 422 23
[17] Lu Z P and Liu C T 2004 J. Mater. Sci. 39 3965
[18] Wang W H 2007 Prog. Mater. Sci. 52 540
[19] Turnbull D 1969 Contemp. Phys. 10 473
[20] Lu Z P and Liu C T 2003 Phys. Rev. Lett. 91 115505
[21] Lu Z P and Liu C T 2002 Acta Mater. 50 3501
[22] Xia L, Wu C, Chen S H and Chan K C 2015 AIP Adv. 5 097122
[23] Boer F R De, Boom R, Mattens W C M, Miedema A R and Niessen A K 1988 Cohesion in Metals, Transition Metals Alloys (Amsterdam: North-Holland)
[24] Brkker H 1998 Enthalpies in Alloys: Miedema's Semi-Empirical Model (Switzerland: Trans Tech Publications)
[25] Belorizky E, Fremy M A, Gavigan J P, Givord D and Li H S 1987 J. Appl. Phys. 61 3971
[26] Zhang J H, Liu S, Gu F, Yang L J and Liu M 2006 Acta Phys. Sin. 55 2928 (in Chinese)
[27] Gschneidner K A Jr, Pecharsky V K and Tsokol A O 2005 Rep. Prog. Phys. 68 1479
[28] Alvarez-Alonso P, Sánchez Llamazares J L, Sánchez-Valdés C F, Fdez-Gubieda M L, Gorria P and Blanco J A 2015 J. Appl. Phys. 117 17A710
[29] Gorsse S, Chevalier B and Orveillon G 2008 Appl. Phys. Lett. 92 122501
[30] Boutahar A, Lassri H, Zehani K, Bessais L and Hlil E K 2014 J. Magn. Magn. Mater. 369 92
[31] Franco V, Blázquez J S and Conde A 2006 J. Appl. Phys. 100 064307
[32] Chikazumi S and Graham Jr C D 1997 Physics of Ferromagnetism (Oxford: Clarendon)
[33] Pont M, Puig T, Rao K V and Inoue A 1992 J. Appl. Phys. 71 4991
[34] Richter M 1998 J. Phys. D: Appl. Phys. 31 1017
[35] Oesterreicher H and Parker F T 1984 J. Appl. Phys. 55 4334
[36] Franco V, Blázquez J S and Conde A 2006 Appl. Phys. Lett. 89 222512
Related articles from Frontiers Journals
[1] Yan-Fei Ma, Ben-Zhen Tang, Lei Xia, Ding Ding. Outstanding Magneto-Caloric Effect of a Gd$_{60}$Ni$_{37}$Co$_{3}$ Amorphous Alloy[J]. Chin. Phys. Lett., 2016, 33(12): 016102
[2] Dou-Dou Zhang, Xiu-Ru Liu, Zhu He, Shi-Ming Hong. Pressure and Time Dependences of the Supercooled Liquid-to-Liquid Transition in Sulfur[J]. Chin. Phys. Lett., 2016, 33(02): 016102
[3] GAO Wei, FENG Shi-Dong, QI Li, ZHANG Shi-Liang, LIU Ri-Ping. Local Five-Fold Symmetry and Diffusion Behavior of Zr64Cu36 Amorphous Alloy Based on Molecular Dynamics[J]. Chin. Phys. Lett., 2015, 32(11): 016102
[4] DING Ding, ZHANG Yi-Qing, XIA Lei. Magneto-Caloric Response of a Gd55Co25Al18Sn2 Bulk Metallic Glass[J]. Chin. Phys. Lett., 2015, 32(10): 016102
[5] CHAI Kan, LIN Tie-Song, HE Peng, SUN Jian-Fei. The Kinetic Theory of Growth of Zr-Sn Diffusion Layers on Zr55Cu30Al10Ni5 Metallic Glass[J]. Chin. Phys. Lett., 2014, 31(11): 016102
[6] WANG Ai-Kun, WANG Shi-Guang, XUE Rong-Jie, LIU Guo-Cai, ZHAO Kun. Correlation between Atomic Size Ratio and Poisson's Ratio in Metallic Glasses[J]. Chin. Phys. Lett., 2014, 31(06): 016102
[7] SHUI Lu-Yu, YAN Biao. Crystallization Kinetics Study on Magnetron-Sputtered Amorphous TiAl Alloy Thin Films[J]. Chin. Phys. Lett., 2014, 31(04): 016102
[8] SUN Qiang. A Local Statistical Structural Model for Amorphous Solids[J]. Chin. Phys. Lett., 2013, 30(12): 016102
[9] DING Ding, WANG Peng, GUAN Quan, TANG Mei-Bo, XIA Lei. Excellent Glass Forming Ability and Refrigeration Capacity of a Gd55Al20Ni12Co10Mn3 Bulk Metallic Glass[J]. Chin. Phys. Lett., 2013, 30(9): 016102
[10] WANG Peng, CHAN Kang-Cheung, LU Shuang, TANG Mei-Bo, XIA Lei. Effect of Minor Co Substitution for Ni on the Glass Forming Ability and Magnetic Properties of Gd55Al20Ni25 Bulk Metallic Glass[J]. Chin. Phys. Lett., 2012, 29(9): 016102
[11] SHAO Qing-Yi, CHEN A-Qing, ZHU Kai-Gui, and ZHANG Juan. Numerical Simulation of a P+ a-SiC:H/N+ Poly-Si Solar Cell with High Efficiency and Fill Factor[J]. Chin. Phys. Lett., 2012, 29(8): 016102
[12] WAN Qi-Jian, FENG Jie, GUO Gang. Crystallization Characteristics of SiNx-Doped SbTe Films for Phase Change Memory[J]. Chin. Phys. Lett., 2012, 29(3): 016102
[13] WANG Li-Na, HU Li-Zhong, ZHANG He-Qiu, **, QIU Yu, LANG Ye, LIU Guo-Qiang, QU Guang-Wei, JI Jiu-Yu, MA Jin-Xue,. Effect of Substrate Temperature on the Structural and Raman Properties of Ag-Doped ZnO Films[J]. Chin. Phys. Lett., 2012, 29(1): 016102
[14] LI Yang, QIU Sheng-Bao, SHAO Yang, YAO Ke-Fu** . Effects of the Cooling Rate on the Plasticity of Pd40.5Ni40.5P19 Bulk Metallic Glasses[J]. Chin. Phys. Lett., 2011, 28(11): 016102
[15] SUN Bao-Ru, ZHAN Zai-Ji**, LIANG Bo, ZHANG Rui-Jun, WANG Wen-Kui . Light Emission and Dynamic Failure Mechanism of Hypervelocity Impact on Zr-Ti-Ni-Cu-Be Bulk Metallic Glass[J]. Chin. Phys. Lett., 2011, 28(9): 016102
Viewed
Full text


Abstract