Chin. Phys. Lett.  2016, Vol. 33 Issue (01): 014302    DOI: 10.1088/0256-307X/33/1/014302
FUNDAMENTAL AREAS OF PHENOMENOLOGY(INCLUDING APPLICATIONS) |
Three-Dimensional Scattering of an Incident Plane Shear Horizontal Guided Wave by a Partly through-Thickness Hole in a Plate
Wen-Fa Zhu1,2, Hai-Yan Zhang1**, Jian Xu1, Xiao-Dong Chai2
1School of Communication and Information Engineering, Shanghai University, Shanghai 200444
2School of Urban Railway Transportation, Shanghai University of Engineering Science, Shanghai 201620
Cite this article:   
Wen-Fa Zhu, Hai-Yan Zhang, Jian Xu et al  2016 Chin. Phys. Lett. 33 014302
Download: PDF(881KB)   PDF(mobile)(KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

We investigate the three-dimensional (3D) scattering problem of an incident plane shear horizontal wave by a partly through-thickness hole in an isotropic plate, in which the Lamb wave modes are also included due to the mode conversions by the scattering obstacle in the 3D problem. An analytical model is presented such that the wave fields are expanded in all of propagating and evanescent SH modes and Lamb modes, and the scattered far-fields of three fundamental guided wave modes are analyzed numerically for different sizes of the holes and frequencies. The numerical results are verified by comparing with those obtained by using the approximate Poisson/Mindlin plate model for small hole radius and low frequency. It is also found that the scattering patterns are different from those of the S0 wave incidence. Our work is useful for quantitative evaluation of the plate-like structure by ultrasonic guided waves.

Received: 10 September 2015      Published: 29 January 2016
PACS:  43.20.+g (General linear acoustics)  
  43.35.+d (Ultrasonics, quantum acoustics, and physical effects of sound)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/33/1/014302       OR      https://cpl.iphy.ac.cn/Y2016/V33/I01/014302
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Wen-Fa Zhu
Hai-Yan Zhang
Jian Xu
Xiao-Dong Chai

[1] Chen X, Michaels J E and Michaels T E 2015 IEEE Trans. Ultrason. Ferro. Freq. Control. 62 208
[2] Wang B, Qian Z H and Hirose S 2015 Shock Vib. 2015 1
[3] Zhang H Y, Xu J and Ma S W 2015 Chin. Phys. Lett. 32 084301
[4] Moreau L, Caleap M, Velichko A and Wilcox P D 2012 Wave Motion 49 375
[5] Zhang H Y, Yao J C and Ma S W 2014 Chin. Phys. Lett. 31 034301
[6] Zhang H Y, Yao J C, Wang R and Ma S W 2014 Chin. Phys. Lett. 31 084301
[7] Golato A, Demirli R and Santhanam S 2014 Wave Motion 51 1349
[8] Wang X M and Ying C F 2001 Sci. Chin. A 44 378
[9] Grahn T 2001 J. Nondestruct. Eval. 20 17
[10] Golub M V, Zhang C Z and Wang Y S 2012 J. Sound Vib. 331 1829
[11] Chen B J, Du C L, Zhang J L and Xiao Z M 2013 Acta Mech. 224 2649
[12] Moreau L, Caleap M, Velichko A and Wilcox P D 2011 Wave Motion 48 586
[13] Cegla F B, Rohde A and Veidt M 2008 Wave Motion 45 162
[14] Achenbach J D and Xu Y 1999 J. Acoust Soc. Am. 106 83
[15] Grahn T 2003 Wave Motion 37 63

Related articles from Frontiers Journals
[1] Ze-Lin Kong, Zhi-Kang Lin, and Jian-Hua Jiang. Topological Wannier Cycles for the Bulk and Edges[J]. Chin. Phys. Lett., 2022, 39(8): 014302
[2] Zhi-Kang Lin, Shi-Qiao Wu, Hai-Xiao Wang, and Jian-Hua Jiang. Higher-Order Topological Spin Hall Effect of Sound[J]. Chin. Phys. Lett., 2020, 37(7): 014302
[3] Jian Li, Hong-Juan Yang, Jun Ma, Xiang Gao, Jun-Hong Li, Jian-Zheng Cheng, Wen Wang, Cheng-Hao Wang. Detection and Location of a Target in Layered Media without Prior Knowledge of Medium Parameters *[J]. Chin. Phys. Lett., 0, (): 014302
[4] Jian Li, Hong-Juan Yang, Jun Ma, Xiang Gao, Jun-Hong Li, Jian-Zheng Cheng, Wen Wang, Cheng-Hao Wang. Detection and Location of a Target in Layered Media without Prior Knowledge of Medium Parameters[J]. Chin. Phys. Lett., 2020, 37(6): 014302
[5] Shu-Huan Xie, Xinsheng Fang, Peng-Qi Li, Sibo Huang, Yu-Gui Peng, Ya-Xi Shen, Yong Li, Xue-Feng Zhu. Tunable Double-Band Perfect Absorbers via Acoustic Metasurfaces with Nesting Helical Tracks[J]. Chin. Phys. Lett., 2020, 37(5): 014302
[6] Hong-Juan Yang, Jian Li, Xiang Gao, Jun Ma, Jun-Hong Li, Wen Wang, Cheng-Hao Wang. Detection and Location of a Target in Layered Media by Snapshot Time Reversal and Reverse Time Migration Mixed Method[J]. Chin. Phys. Lett., 2019, 36(11): 014302
[7] Han Zhang, Yang Gao. Acoustic Vortex Beam Generation by a Piezoelectric Transducer Using Spiral Electrodes[J]. Chin. Phys. Lett., 2019, 36(11): 014302
[8] Hang Yang, Xin Zhang, Jian-hua Guo, Fu-gen Wu, Yuan-wei Yao. Influence of Coating Layer on Acoustic Wave Propagation in a Random Complex Medium with Resonant Scatterers[J]. Chin. Phys. Lett., 2019, 36(8): 014302
[9] Cun Wang, Shan-De Li, Wei-Guang Zheng, Qi-Bai Huang. Acoustic Absorption Characteristics of New Underwater Omnidirectional Absorber[J]. Chin. Phys. Lett., 2019, 36(4): 014302
[10] Zhi-Miao Lu, Li Cai, Ji-Hong Wen, Xing Chen. Physically Realizable Broadband Acoustic Metamaterials with Anisotropic Density[J]. Chin. Phys. Lett., 2019, 36(2): 014302
[11] H. Barati, Z. Basiri, A. Abdolali. Acoustic Multi Emission Lens via Transformation Acoustics[J]. Chin. Phys. Lett., 2018, 35(10): 014302
[12] Jie Hu, Bin Liang, Xiao-Jun Qiu. Transparent and Ultra-lightweight Design for Ultra-Broadband Asymmetric Transmission of Airborne Sound[J]. Chin. Phys. Lett., 2018, 35(2): 014302
[13] Zheng Xu, Meng-Lu Qian, Qian Cheng, Xiao-Jun Liu. Manipulating Backward Propagation of Acoustic Waves by a Periodical Structure[J]. Chin. Phys. Lett., 2016, 33(11): 014302
[14] Si-Yuan Yu, Xu Ni, Ye-Long Xu, Cheng He, Priyanka Nayar, Ming-Hui Lu, Yan-Feng Chen. Extraordinary Acoustic Transmission in a Helmholtz Resonance Cavity-Constructed Acoustic Grating[J]. Chin. Phys. Lett., 2016, 33(04): 014302
[15] ZHANG Hai-Yan, XU Jian, MA Shi-Wei. High-Frequency Guided Wave Scattering by a Partly Through-Thickness Hole Based on 3D Theory[J]. Chin. Phys. Lett., 2015, 32(08): 014302
Viewed
Full text


Abstract