Chin. Phys. Lett.  2016, Vol. 33 Issue (01): 014201    DOI: 10.1088/0256-307X/33/1/014201
FUNDAMENTAL AREAS OF PHENOMENOLOGY(INCLUDING APPLICATIONS) |
Heat Transfer and Mode Transition for Laser Ablation Subjected to Supersonic Airflow
Yi-Hui Huang, Hong-Wei Song**, Chen-Guang Huang
Key Laboratory for Mechanics in Fluid-Solid Coupling Systems, Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190
Cite this article:   
Yi-Hui Huang, Hong-Wei Song, Chen-Guang Huang 2016 Chin. Phys. Lett. 33 014201
Download: PDF(670KB)   PDF(mobile)(KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract When laser ablation is subjected to supersonic flow, the influence mechanism of airflow on laser ablation behavior is still unclear. A coupled thermal-fluid-structure model is presented to investigate the influence of supersonic airflow on the development of a laser ablation pit. Results show that the aerodynamic convection cooling effect not only reduces the ablation velocity but also changes the symmetry morphology of the ablation pit due to the non-uniform convective heat transfer. Flow mode transition is also observed when the pit becomes deeper, and significant change in flow pattern and heat transfer behavior are found when the open mode is transformed into the closed mode.
Received: 29 May 2015      Published: 29 January 2016
PACS:  42.62.-b (Laser applications)  
  47.32.Ff (Separated flows)  
  44.20.+b (Boundary layer heat flow)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/33/1/014201       OR      https://cpl.iphy.ac.cn/Y2016/V33/I01/014201
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Yi-Hui Huang
Hong-Wei Song
Chen-Guang Huang
[1] Leitz K H, Koch H and Otto A 2012 Appl. Phys. A 106 885
[2] Cabanillas E D, Creus M F and Mercader R C 2005 J. Mater. Sci. 40 519
[3] Khersonsky A and Lee H 2000 Adv. Mater. Proce. 4 2
[4] Jia H N, Yang X J and Zhao W 2013 Chin. Phys. Lett. 30 044202
[5] Matsuda J and Utsuaii A 1998 Joining Mater. 7 12
[6] Zhao J H, Zhang G R and Liu X F 1996 Chin. J. High Press. Phys. 10 262 (in Chinese)
[7] Wang W P, Tang X S and Gui Y Z 2001 Appl. Laser 21 319
[8] Yuan H, Zhao J H and Tan F L 2005 High Power Laser Part. Beams 15 681 (in Chinese)
[9] Wang Z Y, Chen K and Zuo T 2000 Laser J. 21 44
[10] Huang Y H, Song H W and Huang C G 2013 High Power Laser Part. Beams 25 2229 (in Chinese)
[11] Low D K Y, Li L and Byrd P J 2001 Opt. Lasers Eng. 35 149
[12] Ng G K L and Li L 2001 Opt. Laser Technol. 33 393
[13] Low D K Y, Li L and Byrd P J 2002 J. Manuf. Sci. 124 852
[14] Dietrich J, Brajdic and Walther K 2008 Opt. Lasers Eng. 46 705
[15] Zhang J and Huang C G 2007 High Power Laser Part. Beams 19 1818 (in Chinese)
[16] Zhang L, He J and Tan F L 2011 High Power Laser Part. Beams 23 866 (in Chinese)
[17] Salva and Tarzia 2011 J. Math. Anal. 379 240
[18] Shi W B, Li S X and Xiao Y 2010 High Power Laser Part. Beams 22 1215 (in Chinese)
[19] Selin A and Doyle K 2005 The 43rd AIAA Aerospace Sciences Meeting and Exhibition p 848
[20] Chung K M 1999 5th AIAA/CEAS Aeroacoustics Conference and Exhibition p 1909
Related articles from Frontiers Journals
[1] Yang Miao, Xiang Guo, Xiao-Jun Zhang. Visualization of Fiber Moving in Air Tunnel with Velocity Gradient[J]. Chin. Phys. Lett., 2020, 37(3): 014201
[2] Min-Qiu Liu, De-Qin Ouyang, Chun-Bo Li, Hui-Bin Sun, Shuang-Chen Ruan. Effects of Metal Absorber Thermal Conductivity on Clear Plastic Laser Transmission Welding[J]. Chin. Phys. Lett., 2018, 35(10): 014201
[3] Ju-Nan Kuo, Jian-Liang Wu. Microfluidic Channel Fabrication Process Utilizing Nd:YVO$_{4}$ Laser-Melting Technique[J]. Chin. Phys. Lett., 2017, 34(4): 014201
[4] ZHENG Zhi-Jian, OUYANG De-Qin, ZHAO Jun-Qing, RUAN Shuang-Chen, YU Jun, GUO Chun-Yu, WANG Jin-Zhang. An Effective Thermal Splicing Method to Join Fluoride and Silica Fibers for a High Power Regime[J]. Chin. Phys. Lett., 2015, 32(11): 014201
[5] MAO Ye-Fei, ZHANG Heng-Li, SANG Si-Han, ZHANG Xin, YU Xi-Long, XING Ji-Chuan, XIN Jian-Guo, JIANG Yi. High-Power Continuous-Wave Nd:GdVO4 Solid-State Laser Dual-End-Pumped at 880 nm[J]. Chin. Phys. Lett., 2015, 32(09): 014201
[6] MA Ye-Wan, WU Zhao-Wang, ZHANG Li-Hua, LIU Wan-Fang, ZHANG Jie. Theoretical Study of Local Surface Plasmon Resonances on a Dielectric-Ag Core-Shell Nanosphere Using the Discrete-Dipole Approximation Method[J]. Chin. Phys. Lett., 2015, 32(09): 014201
[7] CUI Zhi-Wei, HAN Yi-Ping, CHEN An-Tao. Electromagnetic Scattering of a High-Order Bessel Trigonometric Beam by Typical Particles[J]. Chin. Phys. Lett., 2015, 32(09): 014201
[8] ZHANG Pin-Liang, TANG Xiu-Zhang, LI Ye-Jun, WANG Zhao, TIAN Bao-Xian, YIN Qian, LU Ze, XIANG Yi-Huai, GAO Zhi-Xing, LI Jing, HU Feng-Ming, GONG Zi-Zheng. Direct Laser-Driven Quasi-Isentropic Compression on HEAVEN-I Laser[J]. Chin. Phys. Lett., 2015, 32(07): 014201
[9] LIU Zhong-Zheng, XUE Xiao-Bo, NIU Fu-Zeng, ZHANG Li-Guo, LING Li, CHEN Jing-Biao. Laser 728 nm Spectroscopy of Electrodeless Discharge Rb Lamp[J]. Chin. Phys. Lett., 2014, 31(12): 014201
[10] LIU Zhong-Zheng, TAO Zhi-Ming, JIANG Zhao-Jie, CHEN Jing-Biao. Cs 728 nm Laser Spectroscopy and Faraday Atomic Filter[J]. Chin. Phys. Lett., 2014, 31(12): 014201
[11] MAO Ye-Fei, ZHANG Heng-Li, XU Liu, DENG Bo, XING Ji-Chuan, XIN Jian-Guo, JIANG Yi. An 880-nm Laser-Diode End-Pumped Nd:YVO4 Slab Laser with a Hybrid Resonator[J]. Chin. Phys. Lett., 2014, 31(07): 014201
[12] CUI Zhi-Wei, HAN Yi-Ping, YU Mei-Ping. Numerical Investigation on Scattering of an Arbitrarily Incident Bessel Beam by Fractal Soot Aggregates[J]. Chin. Phys. Lett., 2014, 31(06): 014201
[13] WU Yun, TAN Yi-Dong, ZHANG Shu-Lian, LI Yan. Influence of Feedback Level on Laser Polarization in Polarized Optical Feedback[J]. Chin. Phys. Lett., 2013, 30(8): 014201
[14] JIA Hai-Ni, YANG Xiao-Jun, ZHAO Wei, ZHAO Hua-Long, DU Xu, YANG Yong. Femtosecond Laser Pulses for Drilling the Shaped Micro-Hole of Turbine Blades[J]. Chin. Phys. Lett., 2013, 30(4): 014201
[15] ZHANG Sheng-Nan, WANG Yan-Fei, ZHANG Tong-Gang, ZHUANG Wei, CHEN Jing-Biao. A Potassium Atom Four-Level Active Optical Clock Scheme[J]. Chin. Phys. Lett., 2013, 30(4): 014201
Viewed
Full text


Abstract