Chin. Phys. Lett.  2015, Vol. 32 Issue (08): 088901    DOI: 10.1088/0256-307X/32/8/088901
CROSS-DISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY |
Exact Solution for Clustering Coefficient of Random Apollonian Networks
FANG Pin-Jie1,2**, ZHANG Duan-Ming1**, HE Min-Hua3, JIANG Xiao-Qin2
1School of Physics, Huazhong University of Science and Technology, Wuhan 430074
2School of Science, Naval University of Engineering, Wuhan 430033
3School of Science, Wuhan Institute of Technology, Wuhan 430073
Cite this article:   
FANG Pin-Jie, ZHANG Duan-Ming, HE Min-Hua et al  2015 Chin. Phys. Lett. 32 088901
Download: PDF(443KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract By means of the series method, we obtain the exact analytical solution of clustering coefficient in random Apollonian networks [Phys. Rev. E 71 (2005) 046141]. Our exact analytical result is identical with the simulation, whereas in the original work, there is a deviation of about 4% between their approximate analytical result and the simulation.
Received: 07 January 2015      Published: 02 September 2015
PACS:  89.75.-k (Complex systems)  
  89.75.Fb (Structures and organization in complex systems)  
  05.10.-a (Computational methods in statistical physics and nonlinear dynamics)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/32/8/088901       OR      https://cpl.iphy.ac.cn/Y2015/V32/I08/088901
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
FANG Pin-Jie
ZHANG Duan-Ming
HE Min-Hua
JIANG Xiao-Qin
[1] Watts D J and Strogatz S H 1998 Nature 393 440
[2] Barabási A L and Albert R 1999 Science 286 509
[3] Albert R and Barabási A L 2002 Rev. Mod. Phys. 74 47
[4] Costa L F, Rodrigues F A, Travieso G and Boas P R V 2007 Adv. Phys. 56 167
[5] Klemm K and Eguíluz V M 2002 Phys. Rev. E 65 036123
[6] Klemm K and Eguíluz V M 2002 Phys. Rev. E 65 057102
[7] Dorogovtsev S N, Goltsev A V and Mendes J F F 2002 Phys. Rev. E 65 066122
[8] Andrade J S, Herrmann H J, Andrade R F S and Silva L R da 2005 Phys. Rev. Lett. 94 018702
[9] Zhou T, Yan G and Wang B H 2005 Phys. Rev. E 71 046141
[10] Chen M, Yu B M, Xu P and Chen J 2007 Physica A 385 707
[11] Zhang Z Z, Gao S Y, Chen L C, Zhou S G, Zhang H J and Guan J H 2010 J. Phys. A: Math. Theor. 43 395101
[12] Xing C M and Liu F A 2010 Acta Phys. Sin. 59 1608 (in Chinese)
[13] Li L and Jin Z L 2011 Chin. Phys. Lett. 28 048701
[14] Zhang J Y, Sun W G, Tong L Y and Li C P 2013 Commun. Theor. Phys. 60 375
[15] Ding Y M, Ding Z and Yang C P 2013 Acta Phys. Sin. 62 098901 (in Chinese)
[16] Jing X L, Ling X, Hu M B and Shi Q 2014 Chin. Phys. Lett. 31 080504
[17] Doye J P K and Massen C P 2005 Phys. Rev. E 71 016128
[18] Andrade R F S and Herrmann H J 2005 Phys. Rev. E 71 056131
[19] Zhang Z Z, Comellas F, Fertin G and Rong L L 2006 J. Phys. A: Math. Theor. 39 1811
[20] Zhang Z Z, Rong L L and Comellas F 2006 Physica A 364 610
[21] Wu Z X, Xu X J and Wang Y H 2006 Phys. Rev. E 73 058101
[22] Zhou T, Yan G and Wang B H 2006 Phys. Rev. E 73 058102
[23] Zhang Z Z, Rong L L and Zhou S G 2006 Phys. Rev. E 74 046105
[24] Zhang Z Z, Chen L C, Zhou S G, Fang L J, Guan J H and Zou T 2008 Phys. Rev. E 77 017102
[25] Lima F W S, Moreira A A and Araújo A D 2012 Phys. Rev. E 86 056109
[26] Shi D H, Zhu S X and Liu L 2007 Physica A 381 515
Related articles from Frontiers Journals
[1] Xiu-Lian Xu, Jin-Xuan Shi . Characterization of the Topological Features of Catalytic Sites in Protein Coevolution Networks[J]. Chin. Phys. Lett., 2020, 37(6): 088901
[2] Xiu-Lian Xu, Jin-Xuan Shi . Characterization of the Topological Features of Catalytic Sites in Protein Coevolution Networks *[J]. Chin. Phys. Lett., 0, (): 088901
[3] Ze-Jun Xie, Lu-Man Zhang, Sheng-Feng Deng, Wei Li. A Dynamic Evolution Model of Airline Networks[J]. Chin. Phys. Lett., 2017, 34(5): 088901
[4] Di Yuan, Dong-Qiu Zhao, Yi Xiao, Ying-Xin Zhang. Travelling Wave in the Generalized Kuramoto Model with Inertia[J]. Chin. Phys. Lett., 2016, 33(05): 088901
[5] MENG Qing-Kuan, FENG Dong-Tai, GAO Xu-Tuan. Monte Carlo Renormalization Group Method to Study the First-Order Phase Transition in the Complex Ferromagnet[J]. Chin. Phys. Lett., 2015, 32(12): 088901
[6] FENG Yue-E, LI Hai-Hong, YANG Jun-Zhong. Dynamics of the Kuramoto Model with Bimodal Frequency Distribution on Complex Networks[J]. Chin. Phys. Lett., 2014, 31(08): 088901
[7] ZHANG Wen, LI Yao-Sheng, DU Peng, XU Chen. Cooperation of a Dissatisfied Adaptive Prisoner's Dilemma in Spatial Structures[J]. Chin. Phys. Lett., 2013, 30(10): 088901
[8] SUN Mei, LI Dan-Dan, HAN Dun, JIA Qiang. Synchronization of Colored Networks via Discrete Control[J]. Chin. Phys. Lett., 2013, 30(9): 088901
[9] M. Mossa Al-sawalha. Adaptive Synchronization and Anti-Synchronization of a Chaotic Lorenz–Stenflo System with Fully Unknown Parameters[J]. Chin. Phys. Lett., 2013, 30(7): 088901
[10] ZHANG Yong, JU Xian-Meng, ZHANG Li-Jie, XU Xin-Jian. Statistics of Leaders in Index-Driven Networks[J]. Chin. Phys. Lett., 2013, 30(5): 088901
[11] ZANG Hong-Yan, MIN Le-Quan, ZHAO Geng, CHEN Guan-Rong. Generalized Chaos Synchronization of Bidirectional Arrays of Discrete Systems[J]. Chin. Phys. Lett., 2013, 30(4): 088901
[12] Wafaa Jawaada, M. S. M. Noorani, M. Mossa Al-sawalha. Anti-Synchronization of Chaotic Systems via Adaptive Sliding Mode Control[J]. Chin. Phys. Lett., 2012, 29(12): 088901
[13] HOU Lv-Lin, LAO Song-Yang, LIU Gang, BAI Liang. Controllability and Directionality in Complex Networks[J]. Chin. Phys. Lett., 2012, 29(10): 088901
[14] LIU Xu,XIE Zheng,YI Dong-Yun**. Community Detection by Neighborhood Similarity[J]. Chin. Phys. Lett., 2012, 29(4): 088901
[15] DUAN Wen-Qi. Formation Mechanism of the Accumulative Magnification Effect in a Financial Time Series[J]. Chin. Phys. Lett., 2012, 29(3): 088901
Viewed
Full text


Abstract